
Autofac Documentation
Release 7.0.0

Autofac Project

Oct 18, 2023

CONTENTS

1 Getting Started 3
1.1 Structuring the Application . 3
1.2 Add Autofac References . 5
1.3 Application Startup . 5
1.4 Application Execution . 6
1.5 Going Further . 8
1.6 Need Help? . 8
1.7 Building from Source . 8

2 What’s New 9
2.1 Release Notes . 9
2.2 Upgrading from Autofac 6.x to 7.x . 10
2.3 Upgrading from Autofac 5.x to 6.x . 10
2.4 Upgrading from Autofac 3.x to 4.x . 13

3 Registering Components 15
3.1 Registration Concepts . 15

3.1.1 Reflection Components . 16
3.1.2 Instance Components . 17
3.1.3 Lambda Expression Components . 18
3.1.4 Open Generic Components . 20
3.1.5 Services vs. Components . 21
3.1.6 Default Registrations . 22
3.1.7 Conditional Registration . 22
3.1.8 Configuration of Registrations . 24
3.1.9 Dynamically-Provided Registrations . 24

3.2 Passing Parameters to Register . 25
3.2.1 Available Parameter Types . 25
3.2.2 Parameters with Reflection Components . 25
3.2.3 Parameters with Lambda Expression Components . 26

3.3 Property and Method Injection . 26
3.3.1 Property Injection . 27
3.3.2 Method Injection . 30

3.4 Assembly Scanning . 31
3.4.1 Scanning for Types . 31
3.4.2 Scanning for Modules . 33
3.4.3 IIS Hosted Web Applications . 34

4 Resolving Services 35
4.1 Passing Parameters to Resolve . 36

i

4.1.1 Available Parameter Types . 36
4.1.2 Parameters with Reflection Components . 36
4.1.3 Parameters with Lambda Expression Components . 37
4.1.4 Passing Parameters Without Explicitly Calling Resolve . 37

4.2 Implicit Relationship Types . 37
4.2.1 Supported Relationship Types . 38
4.2.2 Composing Relationship Types . 48
4.2.3 Relationship Types and Container Independence . 48

5 Controlling Scope and Lifetime 49
5.1 Basic Concepts and Terminology . 49
5.2 Scopes and Hierarchy . 51
5.3 Example: Singleton Lifetime . 52
5.4 Example: Web Application . 55
5.5 Additional Topics to Explore . 56

5.5.1 Working with Lifetime Scopes . 56
5.5.2 Instance Scope . 58
5.5.3 Captive Dependencies . 65
5.5.4 Disposal . 69
5.5.5 Lifetime Events . 73
5.5.6 Running Code at Container Build . 74

6 Configuration 83
6.1 JSON/XML Configuration . 83

6.1.1 Configuring With Microsoft Configuration (4.0+) . 84
6.1.2 Configuring With Application Configuration (Legacy Pre-4.0) 89

6.2 Modules . 92
6.2.1 Introduction . 92
6.2.2 Advantages of Modules . 92
6.2.3 Example . 93
6.2.4 Adapting to the Deployment Environment . 95
6.2.5 Common Use Cases for Modules . 95

7 Application Integration 97
7.1 ASP.NET . 97

7.1.1 OWIN . 97
7.1.2 MVC . 99
7.1.3 Web API . 107
7.1.4 SignalR . 119
7.1.5 Web Forms . 122

7.2 .NET Core . 129
7.2.1 Quick Start . 129
7.2.2 Using a Child Scope as a Root . 130

7.3 ASP.NET Core . 131
7.3.1 Quick Start . 132
7.3.2 Configuration Method Naming Conventions . 135
7.3.3 Dependency Injection Hooks . 137
7.3.4 Differences From ASP.NET Classic . 137
7.3.5 Controllers as Services . 138
7.3.6 Multitenant Support . 139
7.3.7 Using a Child Scope as a Root . 140
7.3.8 Example . 143

7.4 Azure Functions . 143
7.4.1 Overview of Steps . 143

ii

7.4.2 Autofac Job Activator . 143
7.4.3 Startup Class . 145
7.4.4 Example Function . 146
7.4.5 Acknowledgements . 147

7.5 Blazor . 147
7.6 Windows Communication Foundation (WCF) . 147

7.6.1 Clients . 148
7.6.2 Services . 149

7.7 Service Fabric . 155
7.7.1 Quick Start . 155
7.7.2 Per-Request Scopes . 157
7.7.3 Example . 157

7.8 Managed Extensibility Framework (MEF) . 157
7.8.1 Consuming MEF Extensions in Autofac . 158
7.8.2 Providing Autofac Components to MEF Extensions . 158
7.8.3 Using Metadata . 159
7.8.4 Known Issues / Gotchas . 159

7.9 Common Service Locator . 160
7.10 Moq . 160

7.10.1 Getting Started . 160
7.10.2 Configuring Mocks . 161
7.10.3 Configuring Specific Dependencies . 162

7.11 FakeItEasy . 163
7.11.1 Getting Started . 163
7.11.2 Configuring Fakes . 163
7.11.3 Configuring Specific Dependencies . 164
7.11.4 Options for Fakes . 165

8 Best Practices and Recommendations 167
8.1 Always Resolve Dependencies from Nested Lifetimes . 167
8.2 Structure Configuration with Modules . 167
8.3 Use As<T>() in Delegate Registrations . 167
8.4 Use Constructor Injection . 168
8.5 Use Relationship Types, Not Service Locators . 168
8.6 Register Components from Least-to-Most Specific . 168
8.7 Use Profilers for Performance Checking . 168
8.8 Register Once, Resolve Many . 168
8.9 Register Frequently-Used Components with Lambdas . 168
8.10 Consider a Container as Immutable . 169
8.11 Optimize or Avoid Diagnostics . 169

9 Advanced Topics 171
9.1 Registration Sources . 171

9.1.1 “Any Concrete Type Not Already Registered” Source . 171
9.1.2 Contravariant Registration Source . 171
9.1.3 Implementing a Registration Source . 172

9.2 Adapters and Decorators . 175
9.2.1 Adapters . 175
9.2.2 Decorators . 176

9.3 Composites . 179
9.3.1 Metadata . 181
9.3.2 Lifetime . 182
9.3.3 Decorators . 182
9.3.4 Composites and Collections . 182

iii

9.4 Circular Dependencies . 182
9.4.1 Property/Property Dependencies . 183
9.4.2 Constructor/Property Dependencies . 183
9.4.3 Constructor/Constructor Dependencies . 184

9.5 Component Metadata / Attribute Metadata . 184
9.5.1 Adding Metadata to a Component Registration . 184
9.5.2 Consuming Metadata . 185
9.5.3 Strongly-Typed Metadata . 185
9.5.4 Interface-Based Metadata . 187
9.5.5 Attribute-Based Metadata . 187

9.6 Named and Keyed Services . 190
9.6.1 Named Services . 190
9.6.2 Keyed Services . 191

9.7 Delegate Factories . 192
9.7.1 Create a Delegate . 192
9.7.2 Consume the Delegate . 193
9.7.3 Add Resolved Constructor Parameters . 194
9.7.4 Lifetime Scopes and Disposal . 195
9.7.5 RegisterGeneratedFactory (Obsolete) . 195

9.8 Owned Instances . 196
9.8.1 Lifetime and Scope . 196
9.8.2 Relationship Types . 196

9.9 Pooled Instances . 198
9.9.1 Getting Started . 198
9.9.2 Resetting Pooled Instances Between Resolves . 199
9.9.3 Pool Capacity . 200
9.9.4 Matching Lifetime Scopes . 200
9.9.5 Pool Policies . 201

9.10 Custom Constructor Selection . 202
9.10.1 FindConstructorsWith & IConstructorFinder . 202
9.10.2 IConstructorSelector . 203

9.11 Handling Concurrency . 204
9.11.1 Component Registration . 204
9.11.2 Service Resolution . 204
9.11.3 Lifetime Events . 205
9.11.4 Thread Scoped Services . 205
9.11.5 Internals . 205
9.11.6 Thread-Safe Types . 205
9.11.7 Deadlock Avoidance . 205

9.12 Multitenant Applications . 206
9.12.1 What Is Multitenancy? . 206
9.12.2 General Principles . 207
9.12.3 ASP.NET Integration . 211
9.12.4 ASP.NET Core Integration . 213
9.12.5 WCF Integration . 213
9.12.6 Tenant ID Strategy Tips . 219
9.12.7 Example . 220

9.13 AssemblyLoadContext and Lifetime Scopes . 220
9.14 Resolve Pipelines . 222
9.15 Service Pipelines vs Registration Pipelines . 222
9.16 Pipeline Phases . 222
9.17 Adding Registration Middleware . 223

9.17.1 Defining Middleware Classes . 224
9.17.2 Adding Middleware to all Registrations . 224

iv

9.18 ResolveRequestContext . 225
9.19 Adding Service Middleware . 225
9.20 Service Middleware Sources . 226
9.21 Aggregate Services . 226

9.21.1 Introduction . 226
9.21.2 Required References . 227
9.21.3 Getting Started . 227
9.21.4 How Aggregate Services are Resolved . 228
9.21.5 Properties . 228
9.21.6 Methods . 228
9.21.7 Property Setters and Void Methods . 229
9.21.8 How It Works . 229
9.21.9 Performance Considerations . 229

9.22 Type Interceptors . 229
9.22.1 Enabling Interception . 229
9.22.2 Tips . 232
9.22.3 Known Issues . 233

9.23 Cross-Platform and Native Applications . 234
9.23.1 Xamarin . 234
9.23.2 .NET Native . 235

10 Debugging and Troubleshooting 237
10.1 Exceptions . 237

10.1.1 The requested service has not been registered . 237
10.1.2 No constructors can be found . 238
10.1.3 None of the constructors found can be invoked . 239
10.1.4 No scope with a matching tag . 240

10.2 Diagnostics . 241
10.2.1 Diagnostics . 241

10.3 Support . 251

11 Examples 253
11.1 Examples Repository . 253
11.2 log4net Integration Middleware . 253

12 Frequently Asked Questions 255
12.1 How do I work with per-request lifetime scope? . 255

12.1.1 Note on ASP.NET Core . 255
12.1.2 Registering Dependencies as Per-Request . 256
12.1.3 How Per-Request Lifetime Works . 256
12.1.4 Sharing Dependencies Across Apps Without Requests . 257
12.1.5 Testing with Per-Request Dependencies . 258
12.1.6 Troubleshooting Per-Request Dependencies . 261
12.1.7 Implementing Custom Per-Request Semantics . 262

12.2 How do I pick a service implementation by context? . 263
12.2.1 Option 1: Redesign Your Interfaces . 264
12.2.2 Option 2: Change the Registrations . 267
12.2.3 Option 3: Use Keyed Services . 268
12.2.4 Option 4: Use Metadata . 269

12.3 How do I create a session-based lifetime scope in a web application? 272
12.3.1 Why This is a Bad Idea . 272
12.3.2 How to Do It . 273

12.4 Why aren’t my assemblies getting scanned after IIS restart? . 274
12.5 How do I conditionally register components? . 274

v

12.5.1 Use Configuration . 274
12.5.2 Use Modules . 275
12.5.3 Lambda Registrations . 275

12.6 How do I share component registrations across application types? 275
12.7 How do I keep Autofac references isolated away from my app? . 275

12.7.1 Application Startup . 276
12.7.2 Component Registrations . 276
12.7.3 Service Resolution . 277

12.8 Why are “old versions” of the framework (e.g., System.Core 2.0.5.0) referenced? 278
12.9 Why don’t all Autofac packages target the latest Autofac core? . 279
12.10 How do I inject configuration, environment, or context parameters? 280

12.10.1 Option 1: Register Using a Lambda . 281
12.10.2 Option 2: Use a Provider . 282

12.11 How do I pass a parameter to a component in the middle of a resolve chain? 283
12.11.1 Why This is a Design Problem . 285
12.11.2 Solutions . 285

12.12 Why isn’t container registration analysis built in? . 285
12.13 Why are things in my Xamarin app misbehaving? . 286

13 Glossary 287

14 Contributor Guide 289

15 Getting Support 291
15.1 Community Support . 291
15.2 Commercial Support . 291
15.3 Filing an Issue . 291

16 Owner’s Guide 293
16.1 Ownership is About Trust . 293
16.2 Code of Conduct . 293
16.3 Responsibilities . 293

16.3.1 API Design . 294
16.3.2 Bug Fixes and Enhancements . 294
16.3.3 Performance and Testing . 294
16.3.4 Issue Review . 294
16.3.5 Pull Request Review . 295
16.3.6 Support . 296
16.3.7 Documentation and Examples . 297
16.3.8 Compatibility . 297

16.4 Release Process . 298
16.5 You Are Not Alone . 298

17 Indices and tables 299

vi

Autofac Documentation, Release 7.0.0

Autofac is an addictive IoC container for .NET. It manages the dependencies between classes so that applications stay
easy to change as they grow in size and complexity. This is achieved by treating regular .NET classes as components.

CONTENTS 1

http://martinfowler.com/articles/injection.html

Autofac Documentation, Release 7.0.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

The basic pattern for integrating Autofac into your application is:

• Structure your app with inversion of control (IoC) in mind.

• Add Autofac references.

• At application startup. . .

– Create a ContainerBuilder.

– Register components.

– Build the container and store it for later use.

• During application execution. . .

– Create a lifetime scope from the container.

– Use the lifetime scope to resolve instances of the components.

This getting started guide walks you through these steps for a simple console application. Once you have the basics
down, you can check out the rest of the wiki for more advanced usage and integration information for WCF, ASP.NET,
and other application types.

1.1 Structuring the Application

The idea behind inversion of control is that, rather than tie the classes in your application together and let classes “new
up” their dependencies, you switch it around so dependencies are instead passed in during class construction. Martin
Fowler has an excellent article explaining dependency injection/inversion of control if you want more on that.

For our sample app, we’ll define a class that writes the current date out. However, we don’t want it tied to the Console
because we want to be able to test the class later or use it in a place where the console isn’t available.

We’ll also go as far as allowing the mechanism writing the date to be abstracted, so if we want to, later, swap in a
version that writes tomorrow’s date, it’ll be a snap.

We’ll do something like this:

using System;

namespace DemoApp
{
// This interface helps decouple the concept of
// "writing output" from the Console class. We
// don't really "care" how the Write operation

(continues on next page)

3

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

Autofac Documentation, Release 7.0.0

(continued from previous page)

// happens, just that we can write.
public interface IOutput
{
void Write(string content);

}

// This implementation of the IOutput interface
// is actually how we write to the Console. Technically
// we could also implement IOutput to write to Debug
// or Trace... or anywhere else.
public class ConsoleOutput : IOutput
{
public void Write(string content)
{
Console.WriteLine(content);

}
}

// This interface decouples the notion of writing
// a date from the actual mechanism that performs
// the writing. Like with IOutput, the process
// is abstracted behind an interface.
public interface IDateWriter
{
void WriteDate();

}

// This TodayWriter is where it all comes together.
// Notice it takes a constructor parameter of type
// IOutput - that lets the writer write to anywhere
// based on the implementation. Further, it implements
// WriteDate such that today's date is written out;
// you could have one that writes in a different format
// or a different date.
public class TodayWriter : IDateWriter
{
private IOutput _output;
public TodayWriter(IOutput output)
{
this._output = output;

}

public void WriteDate()
{
this._output.Write(DateTime.Today.ToShortDateString());

}
}

}

Now that we have a reasonably structured (if contrived) set of dependencies, let’s get Autofac in the mix!

4 Chapter 1. Getting Started

Autofac Documentation, Release 7.0.0

1.2 Add Autofac References

The first step is to add Autofac references to your project. For this example, we’re only using core Autofac. Other
application types may use additional Autofac integration libraries..

The easiest way to do this is through NuGet. The “Autofac” package has all the core functionality you’ll need.

1.3 Application Startup

At application startup, you need to create a ContainerBuilder and register your components with it. A component is an
expression, .NET type, or other bit of code that exposes one or more services and can take in other dependencies.

In simple terms, think about a .NET type that implements an interface, like this:

public class SomeType : IService
{
}

You could address that type in one of two ways:

• As the type itself, SomeType

• As the interface, an IService

In this case, the component is SomeType and the services it exposes are SomeType and IService.

In Autofac, you’d register that with a ContainerBuilder something like this:

// Create your builder.
var builder = new ContainerBuilder();

(continues on next page)

1.2. Add Autofac References 5

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Usually you're only interested in exposing the type
// via its interface:
builder.RegisterType<SomeType>().As<IService>();

// However, if you want BOTH services (not as common)
// you can say so:
builder.RegisterType<SomeType>().AsSelf().As<IService>();

For our sample app, we need to register all of our components (classes) and expose their services (interfaces) so things
can get wired up nicely.

We also need to store the container so it can be used to resolve types later.

using System;
using Autofac;

namespace DemoApp
{
public class Program
{
private static IContainer Container { get; set; }

static void Main(string[] args)
{
var builder = new ContainerBuilder();
builder.RegisterType<ConsoleOutput>().As<IOutput>();
builder.RegisterType<TodayWriter>().As<IDateWriter>();
Container = builder.Build();

// The WriteDate method is where we'll make use
// of our dependency injection. We'll define that
// in a bit.
WriteDate();

}
}

}

Now we have a container with all of the components registered and they’re exposing the proper services. Let’s make
use of it.

1.4 Application Execution

During application execution, you’ll need to make use of the components you registered. You do this by resolving them
from a lifetime scope.

The container itself is a lifetime scope, and you can technically just resolve things right from the container. It is not
recommended to resolve from the container directly, however.

When you resolve a component, depending on the instance scope you define, a new instance of the object gets created.
(Resolving a component is roughly equivalent to calling “new” to instantiate a class. That’s really, really oversimpli-
fying it, but from an analogy perspective it’s fine.) Some components may need to be disposed (like they implement
IDisposable) - Autofac can handle disposing those components for you when the lifetime scope is disposed.

6 Chapter 1. Getting Started

Autofac Documentation, Release 7.0.0

However, the container lives for the lifetime of your application. If you resolve a lot of stuff directly from the container,
you may end up with a lot of things hanging around waiting to be disposed. That’s not good (and you may see a
“memory leak” doing that).

Instead, create a child lifetime scope from the container and resolve from that. When you’re done resolving components,
dispose of the child scope and everything gets cleaned up for you.

(When you’re working with the Autofac integration libraries, this child scope creation is largely done for you so you
don’t have to think about it.)

For our sample app, we’ll implement the “WriteDate” method to get the writer from a scope and dispose of the scope
when we’re done.

namespace DemoApp
{
public class Program
{
private static IContainer Container { get; set; }

static void Main(string[] args)
{
// ...the stuff you saw earlier...

}

public static void WriteDate()
{
// Create the scope, resolve your IDateWriter,
// use it, then dispose of the scope.
using (var scope = Container.BeginLifetimeScope())
{
var writer = scope.Resolve<IDateWriter>();
writer.WriteDate();

}
}

}
}

Now when you run your program. . .

• The WriteDate method creates a lifetime scope from which it can resolve dependencies. It does this to avoid
any memory leaks - if IDateWriter or its dependencies are disposable, they will be automatically disposed
when the scope is disposed.

• The WriteDatemethod manually resolves an IDateWriter from the lifetime scope. (This is “service location.”)
Internally. . .

– Autofac sees that IDateWriter maps to TodayWriter so starts creating a TodayWriter.

– Autofac sees that the TodayWriter needs an IOutput in its constructor. (This is “constructor injection.”)

– Autofac sees that IOutput maps to ConsoleOutput so creates a new ConsoleOutput instance.

– Autofac uses the new ConsoleOutput instance to finish constructing the TodayWriter.

– Autofac returns the fully-constructed TodayWriter for WriteDate to consume.

• The call to writer.WriteDate() goes to the brand new TodayWriter.WriteDate() since that’s what was
resolved.

1.4. Application Execution 7

Autofac Documentation, Release 7.0.0

• The Autofac lifetime scope is disposed. Any disposable items that were resolved from that lifetime scope are
also disposed.

Later, if you want your application to write a different date, you could implement a different IDateWriter and then
change the registration at app startup. You don’t have to change any other classes. Yay, inversion of control!

Note: generally speaking, service location is largely considered an anti-pattern (see article). That is, manually
creating scopes everywhere and sprinkling use of the container through your code is not necessarily the best way to
go. Using the Autofac integration libraries you usually won’t have to do what we did in the sample app above. Instead,
things get resolved from a central, “top level” location in the application and manual resolution is rare. Of course, how
you design your app is up to you.

1.5 Going Further

The sample app gives you an idea of how to use Autofac, but there’s a lot more you can do.

• Check out the list of integration libraries to see how to integrate Autofac with your application.

• Learn about the ways to register components that add flexibility.

• Learn about Autofac configuration options that allow you to better manage your component registrations.

1.6 Need Help?

• You can ask questions on StackOverflow.

• You can participate in the Autofac Google Group.

• There’s an introductory Autofac tutorial on CodeProject.

• We have advanced debugging tips if you want to dive deep.

1.7 Building from Source

The source code along with Visual Studio project files is available on GitHub. Build instructions and details on con-
tributing can be found in the Contributor Guide.

8 Chapter 1. Getting Started

http://blog.ploeh.dk/2010/02/03/ServiceLocatorIsAnAntiPattern.aspx
https://stackoverflow.com/questions/tagged/autofac
https://groups.google.com/forum/#forum/autofac
http://www.codeproject.com/KB/architecture/di-with-autofac.aspx
https://github.com/autofac/Autofac

CHAPTER

TWO

WHAT’S NEW

2.1 Release Notes

Release notes for Autofac and integration packages are all stored in the GitHub releases for the respective package.

• Core components

• Autofac

• Autofac.Configuration

• Autofac.Diagnostics.DotGraph

• Integration libraries

• .NET Core / ASP.NET Core

• ASP.NET

• Web Forms

• MVC

• Web API

• SignalR

• OWIN

– OWIN Core

– OWIN Web API Integration

– OWIN MVC Integration

• WCF

• MEF

• Service Fabric

• Common Service Locator

• Moq

• FakeItEasy

• MvvmCross

• Multitenancy

• General Application Multitenancy

• WCF Multitenancy

9

https://github.com/autofac/Autofac/releases
https://github.com/autofac/Autofac.Configuration/releases
https://github.com/autofac/Autofac.Diagnostics.DotGraph/releases
https://github.com/autofac/Autofac.Extensions.DependencyInjection/releases
https://github.com/autofac/Autofac.Web/releases
https://github.com/autofac/Autofac.Mvc/releases
https://github.com/autofac/Autofac.WebApi/releases
https://github.com/autofac/Autofac.SignalR/releases
https://github.com/autofac/Autofac.Owin/releases
https://github.com/autofac/Autofac.WebApi.Owin/releases
https://github.com/autofac/Autofac.Mvc.Owin/releases
https://github.com/autofac/Autofac.Wcf/releases
https://github.com/autofac/Autofac.Mef/releases
https://github.com/autofac/Autofac.ServiceFabric/releases
https://github.com/autofac/Autofac.Extras.CommonServiceLocator/releases
https://github.com/autofac/Autofac.Extras.Moq/releases
https://github.com/autofac/Autofac.Extras.FakeItEasy/releases
https://github.com/autofac/Autofac.Extras.MvvmCross/releases
https://github.com/autofac/Autofac.Multitenant/releases
https://github.com/autofac/Autofac.Multitenant.Wcf/releases

Autofac Documentation, Release 7.0.0

• ASP.NET Core Multitenancy

• Extended features

• Aggregate Services

• Attribute Metadata

• Dynamic Proxy / Interception

2.2 Upgrading from Autofac 6.x to 7.x

In the upgrade from Autofac 6.x to 7.x, the amount of breaking change was fairly minimal, and unlikely to impact most
users, but there are a couple of distinct changes to make you aware of.

• We have dropped direct support for the net5.0 TFM (and we recommend you upgrade to net6.0 or higher), but
you can still use this release on .NET 5.0 via our netstandard2.1 TFM support.

• The introduction of automatic injection for required properties means that any existing required properties on
components will now be automatically injected.

If a required property cannot be resolved during component activation, an exception will now be thrown.

Equally, if you previously used PropertiesAutowired() to populate required properties on components, those
properties will now be automatically injected, so PropertiesAutowired() can be removed provided there are
no “not required” properties on the component.

• RegisterGeneratedFactory has been marked as obsolete. You should update your code to use the Func<T>
implicit relationship or delegate factories.

• The definition of the ILifetimeScope interface has been changed to add the
BeginLoadContextLifetimeScope method and its overloads, on .NET 5.0+. If you implement a “fake”
lifetime scope for any tests, you will need to add an implementation of these methods. For most test use-cases,
it’s suitable to call the existing BeginLifetimeScope methods, ignoring the provided load context.

2.3 Upgrading from Autofac 5.x to 6.x

In the change from Autofac 5.x to 6.x, the internals of Autofac went through a major overhaul; specifically, changing
to a resolve pipeline for executing a resolve.

While there should not be any breaking behavioral changes, there are some method signature and interface member
changes you may need to be aware of.

We have gone out of our way to try and reduce the number of breaking changes, so the breaks are generally limited to
more advanced usage scenarios that most users shouldn’t run into.

• If you have implemented a custom IConstructorSelector to pass to the UsingConstructor reg-
istration method, you will need to update your implementation to use BoundConstructor instead of
ConstructorParameterBinding. The new BoundConstructor type exposes similar properties (including
the TargetConstructor):

// v5.x
ConstructorParameterBinding SelectConstructorBinding(ConstructorParameterBinding[]␣
→˓constructorBindings, IEnumerable<Parameter> parameters);

// v6.x
(continues on next page)

10 Chapter 2. What’s New

https://github.com/autofac/Autofac.AspNetCore.Multitenant/releases
https://github.com/autofac/Autofac.Extras.AggregateService/releases
https://github.com/autofac/Autofac.Extras.AttributeMetadata/releases
https://github.com/autofac/Autofac.Extras.DynamicProxy/releases

Autofac Documentation, Release 7.0.0

(continued from previous page)

BoundConstructor SelectConstructorBinding(BoundConstructor[] constructorBindings,␣
→˓IEnumerable<Parameter> parameters);

• If you have implemented a custom registration source you will need to update the IRegistrationSource.
RegistrationsFor method.

// 5.x
IEnumerable<IComponentRegistration> RegistrationsFor(Service service, Func<Service,␣
→˓IEnumerable<IComponentRegistration>> registrationAccessor);

// 6.x
IEnumerable<IComponentRegistration> RegistrationsFor(Service service, Func<Service,␣
→˓IEnumerable<ServiceRegistration>> registrationAccessor);

The registrationAccessor parameter is a callback that, given a service, will return the set of registrations
available for that service.

In 6.x, the return type of this callback was changed from IEnumerable<IComponentRegistration> to
IEnumerable<ServiceRegistration>.

A ServiceRegistration encapsulates the registration (via the Registration property of the type), but also
exposes the resolve pipeline Autofac needs in order to resolve a registration.

• If you have implemented your own IInstanceActivator (instead of relying on the built-in Autofac ones), then
you will need to update it; instead of an ActivateInstance method to return an instance, instead the activator
must implement a ConfigurePipeline, which allows the Activator to add its own middleware to the resolve
pipeline.

// 5.x
public interface IInstanceActivator : IDisposable
{

object ActivateInstance(IComponentContext context, IEnumerable<Parameter>␣
→˓parameters);

Type LimitType { get; }
}

// 6.x
public interface IInstanceActivator : IDisposable
{

void ConfigurePipeline(IComponentRegistryServices componentRegistryServices,␣
→˓IResolvePipelineBuilder pipelineBuilder);

Type LimitType { get; }
}

• RegistrationBuilder.RegistrationData no longer exposes the configured ActivatedHandlers,
ActivatingHandlers or PreparingHandlers, and IComponentRegistration no longer exposes
Preparing, Activating or Activated events.

All Autofac events are now implemented as CoreEventMiddleware added to the resolve pipeline.

// 5.x
builder.RegisterCallback(x =>
{

x.Registered += (sender, args) =>
{

(continues on next page)

2.3. Upgrading from Autofac 5.x to 6.x 11

Autofac Documentation, Release 7.0.0

(continued from previous page)

args.ComponentRegistration.Activated += (o, c) =>
{

// Do something with the component instance
var instance = c.Instance;

};
};

});

// 6.x
builder.ComponentRegistryBuilder.Registered += (sender, args) =>
{

args.ComponentRegistration.PipelineBuilding += (sender2, pipeline) =>
{

pipeline.Use(PipelinePhase.Activation, MiddlewareInsertionMode.EndOfPhase,␣
→˓(c, next) =>

{
next(c);

// Do something with the component instance
var instance = c.Instance;

});
};

};

If you need to inspect the set of event handlers added to the registration, you can inspect the registered middleware
for instances of CoreEventMiddleware:

// Check if the registration has an OnActivated handler.
if (registration.ResolvePipeline.Middleware.Any(c => c is CoreEventMiddleware ev &&␣
→˓ev.EventType == ResolveEventType.OnActivated))
{
}

• It is no longer possible to access the set of Decorators for a registration using IComponentRegistry.
DecoratorsFor. Instead, if you need to access the set of decorators, (which you normally wouldn’t need to) use
the IComponentRegistry.ServiceMiddlewareFor method to get the middleware for a Service, and check
for middleware that runs in the Decoration pipeline phase.

• Registrations that target a different registration, using the Targeting registration method, no longer need to
specify an isAdapterForIndividualComponent parameter.

• The ContainerBuilder is now marked as sealed, so it cannot be overridden. It was never expected that you
would override ContainerBuilder, but some users saw undesirable behavior when they did.

• The constructor for ResolveRequest now takes a ServiceRegistration, instead of an
IComponentRegistration.

12 Chapter 2. What’s New

Autofac Documentation, Release 7.0.0

2.4 Upgrading from Autofac 3.x to 4.x

The Autofac 4.x release added .NET Core support to core Autofac as well as several of the integration packages.

Generally speaking, the public API held stable during the upgrade but internals changed because reflection and a few
other things are done just slightly differently in .NET Core.

The following is a list of known differences between the 3.x and 4.x versions of Autofac including changes to integra-
tion/extras packages:

• The following NuGet packages were renamed:

– Autofac.Extras.Attributed => Autofac.Extras.AttributeMetadata

– Autofac.Extras.Multitenant => Autofac.Multitenant

– Autofac.Extras.Multitenant.Wcf => Autofac.Multitenant.Wcf

– Autofac.Extras.DynamicProxy2 => Autofac.Extras.DynamicProxy

• Minimum target frameworks for all packages has been increased to .NET 4.5 and the .NET 4.5 security model
is being used (e.g., no more AllowPartiallyTrustedCallersAttribute).

• The Autofac.Configuration package now uses Microsoft.Extensions.Configuration formatted configuration files
instead of the old XML format. You can read more about this on the configuration page.

• The following integration packages have been moved to maintenance mode (fixes only, no new features, no active
work):

– Autofac.Extras.NHibernate

– Autofac.Extras.EnterpriseLibraryConfigurator

– Autofac.Integration.DomainServices

2.4. Upgrading from Autofac 3.x to 4.x 13

Autofac Documentation, Release 7.0.0

14 Chapter 2. What’s New

CHAPTER

THREE

REGISTERING COMPONENTS

3.1 Registration Concepts

You register components with Autofac by creating a ContainerBuilder and informing the builder which components
expose which services.

Components can be created via reflection (by registering a specific .NET type or open generic); by providing a ready-
made instance (an instance of an object you created); or via lambda expression (an anonymous function that executes
to instantiate your object). ContainerBuilder has a family of Register() methods that allow you to set these up.

Each component exposes one or more services that are wired up using the As() methods on ContainerBuilder.

// Create the builder with which components/services are registered.
var builder = new ContainerBuilder();

// Register types that expose interfaces...
builder.RegisterType<ConsoleLogger>().As<ILogger>();

// Register instances of objects you create...
var output = new StringWriter();
builder.RegisterInstance(output).As<TextWriter>();

// Register expressions that execute to create objects...
builder.Register(c => new ConfigReader("mysection")).As<IConfigReader>();

// Build the container to finalize registrations
// and prepare for object resolution.
var container = builder.Build();

// Now you can resolve services using Autofac. For example,
// this line will execute the lambda expression registered
// to the IConfigReader service.
using(var scope = container.BeginLifetimeScope())
{
var reader = scope.Resolve<IConfigReader>();

}

15

Autofac Documentation, Release 7.0.0

3.1.1 Reflection Components

Register by Type

Components generated by reflection are typically registered by type:

var builder = new ContainerBuilder();
builder.RegisterType<ConsoleLogger>();
builder.RegisterType(typeof(ConfigReader));

When using reflection-based components, Autofac automatically uses the constructor for your class with the most
parameters that are able to be obtained from the container.

For example, say you have a class with three constructors like this:

public class MyComponent
{

public MyComponent() { /* ... */ }
public MyComponent(ILogger logger) { /* ... */ }
public MyComponent(ILogger logger, IConfigReader reader) { /* ... */ }

}

Now say you register components and services in your container like this:

var builder = new ContainerBuilder();
builder.RegisterType<MyComponent>();
builder.RegisterType<ConsoleLogger>().As<ILogger>();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
var component = scope.Resolve<MyComponent>();

}

When you resolve your component, Autofac will see that you have an ILogger registered, but you don’t have an
IConfigReader registered. In that case, the second constructor will be chosen since that’s the one with the most
parameters that can be found in the container.

An important note on reflection-based components: Any component type you register via RegisterType must
be a concrete type. While components can expose abstract classes or interfaces as services, you can’t register an
abstract/interface component. It makes sense if you think about it: behind the scenes, Autofac is creating an instance of
the thing you’re registering. You can’t “new up” an abstract class or an interface. You have to have an implementation,
right?

Specifying a Constructor

You can manually choose a particular constructor to use and override the automatic choice by registering your
component with the UsingConstructormethod and a list of types representing the parameter types in the constructor:

builder.RegisterType<MyComponent>()
.UsingConstructor(typeof(ILogger), typeof(IConfigReader));

Note that you will still need to have the requisite parameters available at resolution time or there will be an error when
you try to resolve the object. You can pass parameters at registration time or you can pass them at resolve time.

16 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

Note: You can find advanced methods of customising which constructor to use here.

Required Properties

Starting in Autofac 7.0, in a reflection-based component, all required properties are automatically resolved, in the same
manner as constructor parameters.

All required properties of the component must be resolvable services (or supplied as a parameter) otherwise an excep-
tion will be thrown when trying to resolve the component.

For example, consider a class with these properties:

public class MyComponent
{
public required ILogger Logger { protected get; init; }

public required IConfigReader ConfigReader { protected get; init; }
}

You can register and use this class as you could if it had a constructor:

var builder = new ContainerBuilder();
builder.RegisterType<MyComponent>();
builder.RegisterType<ConsoleLogger>().As<ILogger>();
builder.RegisterType<ConfigReader>().As<IConfigReader>();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// Logger and ConfigReader will be populated.
var component = scope.Resolve<MyComponent>();

}

Required properties are also set automatically on all base classes (if they are present); this makes required properties
useful with deep object hierarchies, because it allows you to avoid having to invoke base constructors with the set of
services; Autofac will set the base class properties for you.

Note: For more details on required property injection, see the dedicated section in the property injection documenta-
tion.

3.1.2 Instance Components

In some cases, you may want to pre-generate an instance of an object and add it to the container for use by registered
components. You can do this using the RegisterInstance method:

var output = new StringWriter();
builder.RegisterInstance(output).As<TextWriter>();

Something to consider when you do this is that Autofac automatically handles disposal of registered components and
you may want to control the lifetime yourself rather than having Autofac call Dispose on your object for you. In that
case, you need to register the instance with the ExternallyOwned method:

3.1. Registration Concepts 17

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required

Autofac Documentation, Release 7.0.0

var output = new StringWriter();
builder.RegisterInstance(output)

.As<TextWriter>()

.ExternallyOwned();

Registering provided instances is also handy when integrating Autofac into an existing application where a singleton
instance already exists and needs to be used by components in the container. Rather than tying those components
directly to the singleton, it can be registered with the container as an instance:

builder.RegisterInstance(MySingleton.Instance).ExternallyOwned();

This ensures that the static singleton can eventually be eliminated and replaced with a container-managed one.

The default service exposed by an instance is the concrete type of the instance. See “Services vs. Components,” below.

3.1.3 Lambda Expression Components

Reflection is a pretty good default choice for component creation. Things get messy, though, when component creation
logic goes beyond a simple constructor call.

Autofac can accept a delegate or lambda expression to be used as a component creator:

builder.Register(c => new A(c.Resolve()));

The parameter c provided to the expression is the component context (an IComponentContext object) in which the
component is being created. You can use this to resolve other values from the container to assist in creating your
component. It is important to use this rather than a closure to access the container so that deterministic disposal
and nested containers can be supported correctly.

Additional dependencies can be satisfied using this context parameter - in the example, A requires a constructor param-
eter of type B that may have additional dependencies.

As well as using IComponentContext to resolve dependencies in your lambda expression, you can also use the generic
Register overloads to specify your dependencies as a variable number of typed arguments to the lambda, and Autofac
will resolve them for you:

builder.Register((IDependency1 dep1, IDependency2 dep2) => new Component(dep1, dep2));

You can blend the IComponentContext and generic approach if you need to make conditional choices, or use methods
like ResolveNamed. Just add the IComponentContext as the first parameter to the lambda:

builder.Register((IComponentContext ctxt, IDependency1 dep1) => new Component(dep1, ctxt.
→˓ResolveNamed<IDependency2>("value")));

The default service provided by an expression-created component is the inferred return type of the expression.

Below are some examples of requirements met poorly by reflective component creation but nicely addressed by lambda
expressions.

18 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

Complex Parameters

Constructor parameters can’t always be declared with simple constant values. Rather than puzzling over how to con-
struct a value of a certain type using an XML configuration syntax, use code:

builder.Register(c => new UserSession(DateTime.Now.AddMinutes(25)));

(Of course, session expiry is probably something you’d want to specify in a configuration file - but you get the gist ;))

Property Injection

While Autofac offers a more first-class approach to property injection, you can use expressions and property initializers
to populate properties as well:

builder.Register(c => new A(){ MyB = c.ResolveOptional() });

The ResolveOptional method will try to resolve the value but won’t throw an exception if the service isn’t registered.
(You will still get an exception if the service is registered but can’t properly be resolved.) This is one of the options for
resolving a service.

Property injection is not recommended in the majority of cases. Alternatives like the Null Object pattern, overloaded
constructors or constructor parameter default values make it possible to create cleaner, “immutable” components with
optional dependencies using constructor injection.

Selection of an Implementation by Parameter Value

One of the great benefits of isolating component creation is that the concrete type can be varied. This is often done at
runtime, not just configuration time:

builder.Register<CreditCard>(
(c, p) =>
{
var accountId = p.Named<string>("accountId");
if (accountId.StartsWith("9"))
{
return new GoldCard(accountId);

}
else
{
return new StandardCard(accountId);

}
});

In this example, CreditCard is implemented by two classes, GoldCard and StandardCard - which class is instanti-
ated depends on the account ID provided at runtime.

Parameters are provided to the creation function through an optional second parameter named p in this example.

Using this registration would look like:

var card = container.Resolve<CreditCard>(new NamedParameter("accountId", "12345"));

You can use parameters with the Func<X, Y> relationship by using typed instead of named parameters.

3.1. Registration Concepts 19

http://en.wikipedia.org/wiki/Null_Object_pattern

Autofac Documentation, Release 7.0.0

builder.Register<CreditCard>(
(c, p) =>
{
// Typed instead of named to work with Func<X, Y>
var accountId = p.TypedAs<string>();
if (accountId.StartsWith("9"))
{
return new GoldCard(accountId);

}
else
{
return new StandardCard(accountId);

}
});

Using this registration would look like:

var cardFactory = container.Resolve<Func<string, CreditCard>>();
var card = cardFactory("12345");

You can use lambda expression components here, too, to make it even simpler:

builder.Register<string, CreditCard>(
(accountId) =>
{
if (accountId.StartsWith("9"))
{
return new GoldCard(accountId);

}
else
{
return new StandardCard(accountId);

}
});

Another clean, type-safe syntax can be achieved if a delegate to create CreditCard instances is declared and a delegate
factory is used. Delegate factories are the way you can support more than one parameter of the same type.

3.1.4 Open Generic Components

Autofac supports open generic types. Use the RegisterGeneric() builder method:

builder.RegisterGeneric(typeof(NHibernateRepository<>))
.As(typeof(IRepository<>))
.InstancePerLifetimeScope();

When a matching service type is requested from the container, Autofac will map this to an equivalent closed version
of the implementation type:

// Autofac will return an NHibernateRepository<Task>
var tasks = container.Resolve<IRepository<Task>>();

Registration of a specialized service type (e.g. IRepository<Person>) will override the open generic version.

20 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

You can also use delegates to provide the closed generic type, if you have some custom behavior for choosing the closed
generic implementation:

var builder = new ContainerBuilder();

builder.RegisterGeneric((context, types, parameters) =>
{

// Make decisions about what closed type to use.
if (types.Contains(typeof(string)))
{

return new StringSpecializedImplementation();
}

return Activator.CreateInstance(typeof(GeneralImplementation<>).
→˓MakeGenericType(types));
}).As(typeof(IService<>));

Note: Be aware that the delegate form of RegisterGeneric will usually be slightly less performant than the
reflection-based version, because the closed generic type cannot be cached in the same way.

3.1.5 Services vs. Components

When you register components, you have to tell Autofac which services that component exposes. By default, most
registrations will just expose themselves as the type registered:

// This exposes the service "CallLogger"
builder.RegisterType<CallLogger>();

Components can only be resolved by the services they expose. In this simple example it means:

// This will work because the component
// exposes the type by default:
scope.Resolve<CallLogger>();

// This will NOT work because we didn't
// tell the registration to also expose
// the ILogger interface on CallLogger:
scope.Resolve<ILogger>();

You can expose a component with any number of services you like:

builder.RegisterType<CallLogger>()
.As<ILogger>()
.As<ICallInterceptor>();

Once you expose a service, you can resolve the component based on that service. Note, however, that once you expose
a component as a specific service, the default service (the component type) is overridden:

// These will both work because we exposed
// the appropriate services in the registration:
scope.Resolve<ILogger>();

(continues on next page)

3.1. Registration Concepts 21

Autofac Documentation, Release 7.0.0

(continued from previous page)

scope.Resolve<ICallInterceptor>();

// This WON'T WORK anymore because we specified
// service overrides on the component:
scope.Resolve<CallLogger>();

If you want to expose a component as a set of services as well as using the default service, use the AsSelf method:

builder.RegisterType<CallLogger>()
.AsSelf()
.As<ILogger>()
.As<ICallInterceptor>();

Now all of these will work:

// These will all work because we exposed
// the appropriate services in the registration:
scope.Resolve<ILogger>();
scope.Resolve<ICallInterceptor>();
scope.Resolve<CallLogger>();

3.1.6 Default Registrations

If more than one component exposes the same service, Autofac will use the last registered component as the default
provider of that service:

builder.RegisterType<ConsoleLogger>().As<ILogger>();
builder.RegisterType<FileLogger>().As<ILogger>();

In this scenario, FileLogger will be the default for ILogger because it was the last one registered.

To override this behavior, use the PreserveExistingDefaults() modifier:

builder.RegisterType<ConsoleLogger>().As<ILogger>();
builder.RegisterType<FileLogger>().As<ILogger>().PreserveExistingDefaults();

In this scenario, ConsoleLogger will be the default for ILogger because the later registration for FileLogger used
PreserveExistingDefaults().

3.1.7 Conditional Registration

Note: Conditional registration was introduced in Autofac 4.4.0

In most cases, overriding registrations as noted in the section above, “Default Registrations,” is enough
to get the right component resolved at runtime. Ensuring things get registered in the right order; using
PreserveExistingDefaults(); and taking advantage of lambda/delegate registrations for more complex conditions
and behavior can get you pretty far.

There can be a few scenarios where this may not be the way you want to go:

22 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

• You don’t want the component present in the system if something else is handling the functionality. For example,
if you resolve an IEnumerable<T> of a service, all of the registered components implementing that service will
be returned, whether or not you’ve used PreserveExistingDefaults(). Usually this is fine, but there are
some edge cases where you may not want that.

• You only want to register the component if some other component isn’t registered; or only if some other com-
ponent is registered. You can’t resolve things out of a container that you’re building, and you shouldn’t update a
container that’s already built. Being able to conditionally register a component based on other registrations can
be helpful.

There are two registration extensions that can help in these cases:

• OnlyIf() - Provide a lambda that uses an IComponentRegistryBuilder to determine if a registration should
happen.

• IfNotRegistered() - Shortcut to stop a registration from happening if some other service is already registered.

These extensions run at the time of ContainerBuilder.Build() and will execute in the order of the actual compo-
nent registrations. Here are some examples showing how they work:

var builder = new ContainerBuilder();

// Only ServiceA will be registered.
// Note the IfNotRegistered takes the SERVICE TYPE to
// check for (the As<T>), NOT the COMPONENT TYPE
// (the RegisterType<T>).
builder.RegisterType<ServiceA>()

.As<IService>();
builder.RegisterType<ServiceB>()

.As<IService>()

.IfNotRegistered(typeof(IService));

// HandlerA WILL be registered - it's running
// BEFORE HandlerB has a chance to be registered
// so the IfNotRegistered check won't find it.
//
// HandlerC will NOT be registered because it
// runs AFTER HandlerB. Note it can check for
// the type "HandlerB" because HandlerB registered
// AsSelf() not just As<IHandler>(). Again,
// IfNotRegistered can only check for "As"
// types.
builder.RegisterType<HandlerA>()

.AsSelf()

.As<IHandler>()

.IfNotRegistered(typeof(HandlerB));
builder.RegisterType<HandlerB>()

.AsSelf()

.As<IHandler>();
builder.RegisterType<HandlerC>()

.AsSelf()

.As<IHandler>()

.IfNotRegistered(typeof(HandlerB));

// Manager will be registered because both an IService
// and HandlerB are registered. The OnlyIf predicate

(continues on next page)

3.1. Registration Concepts 23

Autofac Documentation, Release 7.0.0

(continued from previous page)

// can allow a lot more flexibility.
builder.RegisterType<Manager>()

.As<IManager>()

.OnlyIf(reg =>
reg.IsRegistered(new TypedService(typeof(IService))) &&
reg.IsRegistered(new TypedService(typeof(HandlerB))));

// Be careful with open generics - IfNotRegistered and IsRegistered
// only work with CLOSED generics because that's what you'd resolve!
// Note the check is for a closed generic that would be registered
// as part of the open generic - if you put an open generic in the
// IfNotRegistered check, it'll always appear not registered.
builder.RegisterGeneric(typeof(CommandHandler<>))

.As(typeof(ICommandHandler<>))

.IfNotRegistered(typeof(ICommandHandler<MyCommand>));

// This is when the conditionals actually run. Again,
// they run in the order the registrations were added
// to the ContainerBuilder.
var container = builder.Build();

3.1.8 Configuration of Registrations

You can use XML or programmatic configuration (“modules”) to provide groups of registrations together or change
registrations at runtime. You can also use use Autofac modules for some dynamic registration generation or conditional
registration logic.

3.1.9 Dynamically-Provided Registrations

Autofac modules are the simplest way to introduce dynamic registration logic or simple cross-cutting features. For
example, you can use a module to dynamically attach a log4net logger instance to a service being resolved.

If you find that you need even more dynamic behavior, such as adding support for a new implicit relationship type, you
might want to check out the registration sources section in the advanced concepts area.

24 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

3.2 Passing Parameters to Register

When you register components you have the ability to provide a set of parameters that can be used during the resolution
of services based on that component. (If you’d rather provide the parameters at resolution time, you can do that instead.)

3.2.1 Available Parameter Types

Autofac offers several different parameter matching strategies:

• NamedParameter - match target parameters by name

• TypedParameter - match target parameters by type (exact type match required)

• ResolvedParameter - flexible parameter matching

NamedParameter and TypedParameter can supply constant values only.

ResolvedParameter can be used as a way to supply values dynamically retrieved from the container, e.g. by resolving
a service by name.

3.2.2 Parameters with Reflection Components

When you register a reflection-based component, the constructor of the type may require a parameter that can’t be
resolved from the container. You can use a parameter on the registration to provide that value.

Say you have a configuration reader that needs a configuration section name passed in:

public class ConfigReader : IConfigReader
{
public ConfigReader(string configSectionName)
{
// Store config section name

}

// ...read configuration based on the section name.
}

You could use a lambda expression component for that:

builder.Register(c => new ConfigReader("sectionName")).As<IConfigReader>();

Or you could pass a parameter to a reflection component registration:

// Using a NAMED parameter:
builder.RegisterType<ConfigReader>()

.As<IConfigReader>()

.WithParameter("configSectionName", "sectionName");

// Using a TYPED parameter:
builder.RegisterType<ConfigReader>()

.As<IConfigReader>()

.WithParameter(TypedParameter.From("sectionName"));

// Using a RESOLVED parameter:
(continues on next page)

3.2. Passing Parameters to Register 25

Autofac Documentation, Release 7.0.0

(continued from previous page)

builder.RegisterType<ConfigReader>()
.As<IConfigReader>()
.WithParameter(
new ResolvedParameter(

(pi, ctx) => pi.ParameterType == typeof(string) && pi.Name ==
→˓"configSectionName",

(pi, ctx) => "sectionName"));

3.2.3 Parameters with Lambda Expression Components

With lambda expression component registrations, rather than passing the parameter value at registration time you
enable the ability to pass the value at service resolution time. (Read more about resolving with parameters.)

In the component registration expression, you can make use of the incoming parameters by using the generic lambda
Register methods:

builder.Register((MyConfig config) => new Worker(config));

If you need access to the full list of parameters, it’s available by changing the delegate signature you use for regis-
tration. Instead of specifying the parameter as an argument to the lambda, take in an IComponentContext and an
IEnumerable<Parameter>:

// Use TWO parameters to the registration delegate:
// c = The current IComponentContext to dynamically resolve dependencies
// p = An IEnumerable<Parameter> with the incoming parameter set
builder.Register((c, p) =>

new Worker(p.Named<MyConfig>("config")));

When resolving with parameters, your lambda will use the parameters passed in:

var customConfig = new MyConfig
{
SomeValue = "../"

};

var worker = scope.Resolve<Worker>(new NamedParameter("config", customConfig));

3.3 Property and Method Injection

While constructor parameter injection is the preferred method of passing values to a component being constructed, you
can also use property or method injection to provide values.

Property injection uses writeable properties rather than constructor parameters to perform injection. Method injec-
tion sets dependencies by calling a method.

26 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

3.3.1 Property Injection

If the component is a lambda expression component, use an object initializer:

builder.Register(c => new A { B = c.Resolve() });

To support circular dependencies, use an activated event handler:

builder.Register(c => new A()).OnActivated(e => e.Instance.B = e.Context.Resolve());

Required Properties

From Autofac 7.0 onwards, for reflection components, all required properties are automatically resolved at the time of
object construction, and are generally treated in much the same way as mandatory constructor arguments.

For example, given the following type:

public class MyComponent
{
public required ILogger Logger { protected get; init; }

public required IConfigReader ConfigReader { protected get; init; }

public IDatabaseContext Context { get; set; }
}

When the component is resolved, Autofac will populate the Logger and ConfigReader properties as if they were
constructor parameters. The Context property will be treated like a standard property and will not be populated by
default.

You can use any valid combination of access modifiers on required properties, however, public required ... {
protected get; init; } is used in these examples as it provides access and visibility that are similar to construc-
tors: the property is only settable at construction and not publicly visible to other classes.

Required property injection also works automatically in all base classes with required properties:

public class ComponentBase
{
public required ILogger Logger { protected get; init; }

}

public class MyComponent : ComponentBase
{
public required IConfigReader ConfigReader { protected get; init; }

}

In the above example, resolving MyComponent would populate Logger in the base class, as well as ConfigReader in
the component itself.

Important: Autofac does not consider the nullability of the type of a required property to indicate any sort of “op-
tional” required property. If the property is marked as required, then it is required, and must be injected, or provided
via a parameter, regardless of its nullability.

3.3. Property and Method Injection 27

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/required

Autofac Documentation, Release 7.0.0

Required Properties and Constructors

You can mix-and-match constructors and required properties if you so wish:

public class MyComponent
{
public MyComponent(ILogger logger)
{
Logger = logger;

}

private ILogger Logger { get; set; }

public required IConfigReader ConfigReader { protected get; init; }
}

When multiple constructors are available, by default Autofac selects the constructor with the most matching parameters
(unless custom constructor selection is used). This remains the case, and the set of required properties has no impact
on the selected constructor.

Autofac has no idea whether or not you set a given required property inside a constructor. Take this example:

public class MyComponent
{
public MyComponent()
{
}

public MyComponent(ILogger logger)
{
Logger = logger;

}

public required ILogger Logger { protected get; init; }
}

Here, the constructor that Autofac will pick is going to be the one that takes the ILogger parameter, which in turn sets
the Logger property. However, since Logger is marked as a required property, Autofac will resolve ILogger a second
time, and inject it into the required property.

To avoid this, mark constructors that set all your required properties with the SetsRequiredMembers attribute:

using System.Diagnostics.CodeAnalysis;

public class MyComponent
{
public MyComponent()
{
}

[SetsRequiredMembers]
public MyComponent(ILogger logger)
{
Logger = logger;

(continues on next page)

28 Chapter 3. Registering Components

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.setsrequiredmembersattribute

Autofac Documentation, Release 7.0.0

(continued from previous page)

}

public required ILogger Logger { protected get; init; }
}

Since the constructor is marked as setting all required members, no required property injection will occur in Autofac,
when that constructor is used to create an instance of the component.

Required Properties and Parameters

Any TypedParameter provided at registration or resolve will be considered when injecting required properties. How-
ever, NamedParameter and PositionalParameter are not considered valid parameters for property injection, since
they are considered to only apply to constructor parameters.

PropertiesAutowired

You can use the PropertiesAutowired() modifier at registration time to inject properties on any component:

// Default behavior: inject all properties that are public and writable.
builder.RegisterType<A>().PropertiesAutowired();

// Provide a delegate property selector to be more granular. This example
// shows injecting all properties where the property type starts with
// 'I' - one way you might "only inject interface properties." The delegate
// gets the PropertyInfo describing the property to be injected and the
// instance getting injected.
builder.RegisterType()

.PropertiesAutowired(
(propInfo, instance) => propInfo.PropertyType.Name.StartsWith("I"));

// Even more fancy, you can provide your own implementation of
// IPropertySelector with as much functionality as you want. Don't
// forget this will run on every associated resolution, so performance
// is important!
builder.RegisterType<C>().PropertiesAutowired(new MyCustomPropSelector());

Manually Specifying Properties

If you have one specific property and value to wire up, you can use the WithProperty() modifier:

builder.RegisterType<A>().WithProperty("PropertyName", propertyValue);

3.3. Property and Method Injection 29

Autofac Documentation, Release 7.0.0

Overriding Required Properties

Any property values provided for required properties using the WithProperty method when registering a type will
override the requirement to inject that property, and Autofac will use the provided value instead:

public class MyComponent
{
public required ILogger Logger { protected get; init; }

public required IConfigReader ConfigReader { protected get; init; }
}

var builder = new ContainerBuilder();
builder.RegisterType<MyComponent>().WithProperty("Logger", new ConsoleLogger());

var container = builder.Build();

// This will not throw, despite ILogger not being registered.
// The Logger property is provided by WithProperty.
container.Resolve<MyComponent>();

Injecting Properties on an Existing Object

You can also populate just the properties on an object. Do this using the InjectUnsetProperties extension on a
lifetime scope, which will resolve and populate properties that are public, writable, and not yet set (null):

lifetimeScope.InjectUnsetProperties(myObject);

3.3.2 Method Injection

The simplest way to call a method to set a value on a component is to use a lambda expression component and handle
the method call right in the activator:

builder.Register(c => {
var result = new MyObjectType();
var dep = c.Resolve<TheDependency>();
result.SetTheDependency(dep);
return result;

});

If you can’t use a registration lambda, you can add an activating event handler:

builder
.RegisterType<MyObjectType>()
.OnActivating(e => {
var dep = e.Context.Resolve<TheDependency>();
e.Instance.SetTheDependency(dep);

});

30 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

3.4 Assembly Scanning

Autofac can use conventions to find and register components in assemblies. You can scan and register individual types
or you can scan specifically for Autofac modules.

3.4.1 Scanning for Types

Otherwise known as convention-driven registration or scanning, Autofac can register a set of types from an assembly
according to user-specified rules:

var dataAccess = Assembly.GetExecutingAssembly();

builder.RegisterAssemblyTypes(dataAccess)
.Where(t => t.Name.EndsWith("Repository"))
.AsImplementedInterfaces();

Each RegisterAssemblyTypes() call will apply one set of rules only - multiple invocations of
RegisterAssemblyTypes() are necessary if there are multiple different sets of components to register.

Autofac also supports assembly scanning for open generics using RegisterAssemblyOpenGenericTypes(). This
uses the same general semantics as RegisterAssemblyTypes():

var dataAccess = Assembly.GetExecutingAssembly();

builder.RegisterAssemblyOpenGenericTypes(dataAccess)
.Where(t => t.Name.StartsWith("MessageHandler"))
.AsImplementedInterfaces();

Filtering Types

RegisterAssemblyTypes() and RegisterAssemblyOpenGenericTypes() each accept a parameter array of one
or more assemblies. By default, all concrete classes in the assembly will be registered. This includes internal and
nested private classes. You can filter the set of types to register using some provided LINQ-style predicates.

In 4.8.0 a PublicOnly() extension was added to make data encapsulation easier. If you only want your public classes
registered, use PublicOnly():

builder.RegisterAssemblyTypes(asm)
.PublicOnly();

To apply custom filtering to the types that are registered, use the Where() predicate:

builder.RegisterAssemblyTypes(asm)
.Where(t => t.Name.EndsWith("Repository"));

To exclude types from scanning, use the Except() predicate:

builder.RegisterAssemblyTypes(asm)
.Except<MyUnwantedType>();

The Except() predicate also allows you to customize the registration for the specific excluded type:

3.4. Assembly Scanning 31

Autofac Documentation, Release 7.0.0

builder.RegisterAssemblyTypes(asm)
.Except<MyCustomizedType>(ct =>

ct.As<ISpecial>().SingleInstance());

Multiple filters can be used, in which case they will be applied with logical AND.

builder.RegisterAssemblyTypes(asm)
.PublicOnly()
.Where(t => t.Name.EndsWith("Repository"))
.Except<MyUnwantedRepository>();

Specifying Services

The registration syntaxes for RegisterAssemblyTypes() and RegisterAssemblyOpenGenericTypes() are a sub-
set of the registration syntax for single types, so methods like As() all work with assemblies as well:

builder.RegisterAssemblyTypes(asm)
.Where(t => t.Name.EndsWith("Repository"))
.As<IRepository>();

Additional overloads to As() and Named() accept lambda expressions that determine, for a type, which services it will
provide:

builder.RegisterAssemblyTypes(asm)
.As(t => t.GetInterfaces()[0]);

As with normal component registrations, multiple calls to As() are added together.

A number of additional registration methods have been added to make it easier to build up common conventions:

Method Description Example
AsImplementedInterfaces() Register the type as providing all of

its public interfaces as services (ex-
cluding IDisposable).

builder.
→˓RegisterAssemblyTypes(asm)

.Where(t => t.Name.
→˓EndsWith("Repository"))

.
→˓AsImplementedInterfaces();
→˓

AsClosedTypesOf(open) Register types that are assignable to
a closed instance of the open generic
type.

builder.
→˓RegisterAssemblyTypes(asm)

.
→˓AsClosedTypesOf(typeof(IRepository
→˓<>));

AsSelf() The default: register types as them-
selves - useful when also overrid-
ing the default with another service
specification.

builder.
→˓RegisterAssemblyTypes(asm)

.
→˓AsImplementedInterfaces()

.AsSelf();

32 Chapter 3. Registering Components

Autofac Documentation, Release 7.0.0

3.4.2 Scanning for Modules

Module scanning is performed with the RegisterAssemblyModules() registration method, which does exactly what
its name suggests. It scans through the provided assemblies for Autofac modules, creates instances of the modules, and
then registers them with the current container builder.

For example, say the two simple module classes below live in the same assembly and each register a single component:

public class AModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.Register(c => new AComponent()).As<AComponent>();

}
}

public class BModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.Register(c => new BComponent()).As<BComponent>();

}
}

The overload of RegisterAssemblyModules() that does not accept a type parameter will register all classes imple-
menting IModule found in the provided list of assemblies. In the example below both modules get registered:

var assembly = typeof(AComponent).Assembly;
var builder = new ContainerBuilder();

// Registers both modules
builder.RegisterAssemblyModules(assembly);

The overload of RegisterAssemblyModules()with the generic type parameter allows you to specify a base type that
the modules must derive from. In the example below only one module is registered because the scanning is restricted:

var assembly = typeof(AComponent).Assembly;
var builder = new ContainerBuilder();

// Registers AModule but not BModule
builder.RegisterAssemblyModules<AModule>(assembly);

The overload of RegisterAssemblyModules() with a Type object parameter works like the generic type parameter
overload but allows you to specify a type that might be determined at runtime. In the example below only one module
is registered because the scanning is restricted:

var assembly = typeof(AComponent).Assembly;
var builder = new ContainerBuilder();

// Registers AModule but not BModule
builder.RegisterAssemblyModules(typeof(AModule), assembly);

3.4. Assembly Scanning 33

Autofac Documentation, Release 7.0.0

3.4.3 IIS Hosted Web Applications

When using assembly scanning with IIS applications, you can run into a little trouble depending on how you do the
assembly location. (This is one of our FAQs)

When hosting applications in IIS all assemblies are loaded into the AppDomain when the application first starts, but
when the AppDomain is recycled by IIS the assemblies are then only loaded on demand.

To avoid this issue use the GetReferencedAssemblies() method on System.Web.Compilation.BuildManager to get a list
of the referenced assemblies instead:

var assemblies = BuildManager.GetReferencedAssemblies().Cast<Assembly>();

That will force the referenced assemblies to be loaded into the AppDomain immediately making them available for
module scanning.

34 Chapter 3. Registering Components

https://msdn.microsoft.com/en-us/library/system.web.compilation.buildmanager.getreferencedassemblies.aspx
https://msdn.microsoft.com/en-us/library/system.web.compilation.buildmanager.aspx

CHAPTER

FOUR

RESOLVING SERVICES

After you have your components registered with appropriate services exposed, you can resolve services from the built
container and child lifetime scopes. You do this using the Resolve() method:

var builder = new ContainerBuilder();
builder.RegisterType<MyComponent>().As<IService>();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
var service = scope.Resolve<IService>();

}

You will notice the example resolves the service from a lifetime scope rather than the container directly - you should,
too.

While it is possible to resolve components right from the root container, doing this through your
application in some cases may result in a memory leak. It is recommended you always resolve com-
ponents from a lifetime scope where possible to make sure service instances are properly disposed and
garbage collected. You can read more about this in the section on controlling scope and lifetime.

When resolving a service, Autofac will automatically chain down the entire dependency hierarchy of the service and
resolve any dependencies required to fully construct the service. If you have circular dependencies that are improperly
handled or if there are missing required dependencies, you will get a DependencyResolutionException.

If you have a service that may or may not be registered, you can attempt conditional resolution of the service using
ResolveOptional() or TryResolve():

// If IService is registered, it will be resolved; if
// it isn't registered, the return value will be null.
var service = scope.ResolveOptional<IService>();

// If IProvider is registered, the provider variable
// will hold the value; otherwise you can take some
// other action.
IProvider provider = null;
if(scope.TryResolve<IProvider>(out provider))
{
// Do something with the resolved provider value.

}

Both ResolveOptional() and TryResolve() revolve around the conditional nature of a specific service being reg-
istered. If the service is registered, resolution will be attempted. If resolution fails (e.g., due to lack of a dependency
being registered), you will still get a DependencyResolutionException. If you need conditional resolution around a

35

Autofac Documentation, Release 7.0.0

service where the condition is based on whether or not the service can successfully resolve, wrap the Resolve() call
with a try/catch block.

Additional topics for resolving services:

4.1 Passing Parameters to Resolve

When it’s time to resolve services, you may find that you need to pass parameters to the resolution. (If you know the
values at registration time, you can provide them in the registration instead.)

The Resolve() methods accept the same parameter types available at registration time using a variable-length argu-
ment list. Alternatively, delegate factories and the Func<T> implicit relationship type also allow ways to pass parame-
ters during resolution.

4.1.1 Available Parameter Types

Autofac offers several different parameter matching strategies:

• NamedParameter - match target parameters by name

• TypedParameter - match target parameters by type (exact type match required)

• ResolvedParameter - flexible parameter matching

NamedParameter and TypedParameter can supply constant values only.

ResolvedParameter can be used as a way to supply values dynamically retrieved from the container, e.g. by resolving
a service by name.

4.1.2 Parameters with Reflection Components

When you resolve a reflection-based component, the constructor of the type may require a parameter that you need to
specify based on a runtime value, something that isn’t available at registration time. You can use a parameter in the
Resolve() method call to provide that value.

Say you have a configuration reader that needs a configuration section name passed in:

public class ConfigReader : IConfigReader
{
public ConfigReader(string configSectionName)
{
// Store config section name

}

// ...read configuration based on the section name.
}

You could pass a parameter to the Resolve() call like this:

var reader = scope.Resolve<ConfigReader>(new NamedParameter("configSectionName",
→˓"sectionName"));

As with registration-time parameters, the NamedParameter in the example will map to the corresponding named
constructor parameter, assuming the ConfigReader component was registered using reflection.

If you have more than one parameter, just pass them all in via the Resolve() method:

36 Chapter 4. Resolving Services

Autofac Documentation, Release 7.0.0

var service = scope.Resolve<AnotherService>(
new NamedParameter("id", "service-identifier"),
new TypedParameter(typeof(Guid), Guid.NewGuid()),
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ILog) && pi.Name == "logger",
(pi, ctx) => LogManager.GetLogger("service")));

4.1.3 Parameters with Lambda Expression Components

With lambda expression component registrations, you need to add the parameter handling inside your lambda expression
so when the Resolve() call passes them in, you can take advantage of them.

In the component registration expression, you can make use of the incoming parameters by changing the dele-
gate signature you use for registration. Instead of just taking in an IComponentContext parameter, take in an
IComponentContext and an IEnumerable<Parameter>:

// Use TWO parameters to the registration delegate:
// c = The current IComponentContext to dynamically resolve dependencies
// p = An IEnumerable<Parameter> with the incoming parameter set
builder.Register((c, p) =>

new ConfigReader(p.Named<string>("configSectionName")))
.As<IConfigReader>();

Now when you resolve the IConfigReader, your lambda will use the parameters passed in:

var reader = scope.Resolve<IConfigReader>(new NamedParameter("configSectionName",
→˓"sectionName"));

4.1.4 Passing Parameters Without Explicitly Calling Resolve

Autofac supports two features that allow you to automatically generate service “factories” that can take strongly-typed
parameter lists that will be used during resolution. This is a slightly cleaner way to create component instances that
require parameters.

• Delegate Factories allow you to define factory delegate methods.

• The Func<T> implicit relationship type can provide an automatically-generated factory function.

There is an example of selecting an implementation by parameter using these methods on the registration page.

4.2 Implicit Relationship Types

Autofac supports automatically resolving particular types implicitly to support special relationships between compo-
nents and services. To take advantage of these relationships, simply register your components as normal, but change
the constructor parameter in the consuming component or the type being resolved in the Resolve() call so it takes in
the specified relationship type.

For example, when Autofac is injecting a constructor parameter of type IEnumerable<ITask> it will not look for a
component that supplies IEnumerable<ITask>. Instead, the container will find all implementations of ITask and
inject all of them.

(Don’t worry - there are examples below showing the usage of the various types and what they mean.)

4.2. Implicit Relationship Types 37

Autofac Documentation, Release 7.0.0

Note: To override this default behavior it is still possible to register explicit implementations of these types.

[Content on this document based on Nick Blumhardt’s blog article The Relationship Zoo.]

4.2.1 Supported Relationship Types

The table below summarizes each of the supported relationship types in Autofac and shows the .NET type you can use
to consume them. Each relationship type has a more detailed description and use case after that.

Relationship Type Meaning
A needs B B Direct Dependency
A needs B at some point in the future Lazy Delayed Instantiation
A needs B until some point in the future Owned Controlled Lifetime
A needs to create instances of B Func Dynamic Instantiation
A provides parameters of types X and Y
to B

Func<X,Y,B> Parameterized Instantia-
tion

A needs all the kinds of B IEnumerable, IList,
ICollection

Enumeration

A needs to know X about B Meta and Meta<B,X> Metadata Interrogation
A needs to choose B based on X IIndex<X,B> Keyed Service Lookup

Relationship Type Details

• Direct Dependency (B)

• Delayed Instantiation (Lazy)

• Controlled Lifetime (Owned)

• Dynamic Instantiation (Func)

• Parameterized Instantiation (Func<X, Y, B>)

• Enumeration (IEnumerable, IList, ICollection)

• Metadata Interrogation (Meta, Meta<B, X>)

• Keyed Service Lookup (IIndex<X, B>)

Direct Dependency (B)

A direct dependency relationship is the most basic relationship supported - component A needs service B. This is
handled automatically through standard constructor and property injection:

public class A
{
public A(B dependency) { ... }

}

Register the A and B components, then resolve:

var builder = new ContainerBuilder();
builder.RegisterType<A>();
builder.RegisterType();

(continues on next page)

38 Chapter 4. Resolving Services

http://nblumhardt.com/2010/01/the-relationship-zoo/

Autofac Documentation, Release 7.0.0

(continued from previous page)

var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// B is automatically injected into A.
var a = scope.Resolve<A>();

}

Delayed Instantiation (Lazy)

A lazy dependency is not instantiated until its first use. This appears where the dependency is infrequently used, or
expensive to construct. To take advantage of this, use a Lazy in the constructor of A:

public class A
{
Lazy _b;

public A(Lazy b) { _b = b }

public void M()
{
// The component implementing B is created the
// first time M() is called
_b.Value.DoSomething();

}
}

If you have a lazy dependency for which you also need metadata, you can use Lazy<B,M> instead of the longer
Meta<Lazy, M>.

Controlled Lifetime (Owned)

An owned dependency can be released by the owner when it is no longer required. Owned dependencies usually
correspond to some unit of work performed by the dependent component.

This type of relationship is interesting particularly when working with components that implement IDisposable.
Autofac automatically disposes of disposable components at the end of a lifetime scope, but that may mean a component
is held onto for too long; or you may just want to take control of disposing the object yourself. In this case, you’d use
an owned dependency.

public class A
{
Owned _b;

public A(Owned b) { _b = b; }

public void M()
{
// _b is used for some task
_b.Value.DoSomething();

(continues on next page)

4.2. Implicit Relationship Types 39

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Here _b is no longer needed, so
// it is released
_b.Dispose();

}
}

Internally, Autofac creates a tiny lifetime scope in which the B service is resolved, and when you call Dispose() on
it, the lifetime scope is disposed. What that means is that disposing of B will also dispose of its dependencies unless
those dependencies are shared (e.g., singletons).

This also means that if you have InstancePerLifetimeScope() registrations and you resolve one as Owned then
you may not get the same instance as being used elsewhere in the same lifetime scope. This example shows the gotcha:

var builder = new ContainerBuilder();
builder.RegisterType<A>().InstancePerLifetimeScope();
builder.RegisterType().InstancePerLifetimeScope();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// Here we resolve a B that is InstancePerLifetimeScope();
var b1 = scope.Resolve();
b1.DoSomething();

// This will be the same as b1 from above.
var b2 = scope.Resolve();
b2.DoSomething();

// The B used in A will NOT be the same as the others.
var a = scope.Resolve<A>();
a.M();

}

This is by design because you wouldn’t want one component to dispose the B out from under everything else. However,
it may lead to some confusion if you’re not aware.

If you would rather control B disposal yourself all the time, register B as ExternallyOwned().

Dynamic Instantiation (Func)

Using an auto-generated factory can let you resolve a new B programmatically within the control flow of your program,
without requiring a direct dependency on the Autofac library. Use this relationship type if:

• You need to create more than one instance of a given service.

• You want to specifically control when the setup of the service occurs.

• You’re not sure if you’re going to need a service and want to make the decision at runtime.

This relationship is also useful in cases like WCF integration where you need to create a new service proxy after faulting
the channel.

Func behaves just like calling Resolve(). That means it’s not limited to acting on parameterless construc-
tors on objects - it will wire up constructor parameters, do property injection, and follow the whole lifecycle that
Resolve() does.

40 Chapter 4. Resolving Services

Autofac Documentation, Release 7.0.0

Further, lifetime scopes are respected. If you register an object as InstancePerDependency() and call the Func
multiple times, you’ll get a new instance each time; if you register an object as SingleInstance() and call the
Func to resolve the object more than once, you will get the same object instance every time.

An example of this relationship looks like:

public class B
{
public B() {}

public void DoSomething() {}
}

public class A
{
Func _bFactory;

public A(Func b) { _bFactory = b; }

public void M()
{
// Calling the Func resolves it from
// the lifetime scope. It's just like calling
// Resolve() - if there are any constructor
// parameters, they all get resolved from
// the scope.
var b = _bFactory();
b.DoSomething();

}
}

Register the A and B components, then resolve:

var builder = new ContainerBuilder();
builder.RegisterType<A>();
builder.RegisterType();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// B won't actually be resolved from the scope
// until A calls that injected Func factory method.
var a = scope.Resolve<A>();

// Here it'll resolve a B!
a.M();

// Since B is registered InstancePerDependency, each call
// to a.M() will resolve a NEW instance of B.
a.M();
a.M();

}

Lifetime scopes are respected, so you can use that to your advantage.

4.2. Implicit Relationship Types 41

Autofac Documentation, Release 7.0.0

// This time B will be registered InstancePerLifetimeScope
// so all of the resolve calls in a given scope will get
// the same B instance.
var builder = new ContainerBuilder();
builder.RegisterType<A>();
builder.RegisterType().InstancePerLifetimeScope();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// B gets resolved inside the A.M() method
// but since B is InstancePerLifetimeScope, the
// A.M() method will get the SAME instance each
// time.
var a = scope.Resolve<A>();
a.M();
a.M();
a.M();

}

Parameterized Instantiation (Func<X, Y, B>)

You can use an auto-generated factory to provide parameters when creating an new instance of the object, where the con-
structor of the object calls for some additional parameters. While the Func relationship is similar to Resolve(),
the Func<X, Y, B> relationship is like calling Resolve(TypedParameter.From<X>(x), TypedParameter.
From<Y>(y)) - a resolve operation that has typed parameters. This is an alternative to passing parameters during
registration or passing during manual resolution:

public class B
{
public B(string someString, int id) {}

public void DoSomething() {}
}

public class A
{
// The parameter types here match the types in the B constructor.
Func<int, string, B> _bFactory;

public A(Func<int, string, B> b) { _bFactory = b }

public void M()
{
var b = _bFactory(42, "http://hell.owor.ld");
b.DoSomething();

}
}

Note that since we’re resolving the instance rather than directly calling the constructor we don’t need to declare the
parameters in the same order as they appear in the constructor definition, nor do we need to provide all the parameters
listed in the constructor. If some of the constructor’s parameters can be resolved by the lifetime scope, then those

42 Chapter 4. Resolving Services

Autofac Documentation, Release 7.0.0

parameters can be omitted from the Func<X, Y, B> signature being declared. You only need to list the types that the
scope can’t resolve.

Alternatively, you can use this approach to override a constructor parameter that would otherwise have been resolved
from the container, with a concrete instance already in hand.

Example:

// Suppose that Q and R are registered with the Autofac container,
// but int and P are not. You need to provide those at runtime.
public class B
{
public B(int id, P peaDependency, Q queueDependency, R ourDependency) {}

public void DoSomething() {}
}

public class A
{
// Note Q and R aren't in this factory.
Func<int, P, B> _bFactory;

public A(Func<int, P, B> bFactory) { _bFactory = bFactory }

public void M(P existingPea)
{
// The Q and R will be resolved by Autofac, but the int
// and P get provided by you as parameters here.
var b = _bFactory(42, existingPea);
b.DoSomething();

}
}

Autofac determines what values to use for the constructor args solely based on the type (like TypedParameter). A
consequence of this is that auto-generated function factories cannot have duplicate types in the input parameter
list. For example, say you have a type like this:

public class DuplicateTypes
{
public DuplicateTypes(int a, int b, string c)
{
// ...

}
}

You might want to register that type and have an auto-generated function factory for it. You will be able to resolve the
function, but you won’t be able to execute it. You can try to resolve a factory with one of each type, and that will work
but you’ll get the same input for all constructor parameters of the same type.

// This auto-generated factory has two parameters of the
// same type - problem!
var funcWithDuplicates = scope.Resolve<Func<int, int, string, DuplicateTypes>>();

// Throws a DependencyResolutionException because of the
// two int types.

(continues on next page)

4.2. Implicit Relationship Types 43

Autofac Documentation, Release 7.0.0

(continued from previous page)

var obj1 = funcWithDuplicates(1, 2, "three");

// This auto-generated factory removes the duplicates, BUT...
var funcWithoutDuplicates = container.Resolve<Func<int, string, DuplicateTypes>>();

// ...the int factory parameter will be the same value for
// BOTH constructor parameters. This factory call will work,
// but it's like saying
// var obj2 = new DuplicateTypes(1, 1, "three");
var obj2 = funcWithoutDuplicates(1, "three");

If you really need multiple parameters of the same type, check out delegate factories.

Lifetime scopes are respected using this relationship type, just as they are when using Func or delegate factories.
If you register an object as InstancePerDependency() and call the Func<X, Y, B> multiple times, you’ll get a new
instance each time. However, if you register an object as SingleInstance() and call the Func<X, Y, B> to resolve
the object more than once, you will get the same object instance every time regardless of the different parameters you
pass in. Just passing different parameters will not break the respect for the lifetime scope:

var builder = new ContainerBuilder();
builder.RegisterType<A>();
builder.RegisterType();
builder.RegisterType<Q>();
builder.RegisterType<R>();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// B won't actually be resolved from the scope
// until A calls that injected Func<int, P, B> factory method.
var a = scope.Resolve<A>();
var p = new P();

// Here it'll resolve a B!
a.M(p);

// Since B is registered InstancePerDependency, each call
// to a.M(P) will resolve a NEW instance of B.
a.M(p);
a.M(p);

}

This shows how lifetime scopes are respected regardless of parameters:

// Note we're registering B as InstancePerLifetimeScope this time. That means
// B will get resolved fresh only ONE TIME per lifetime scope, even if different
// parameters are passed.
var builder = new ContainerBuilder();
builder.RegisterType().InstancePerLifetimeScope();
builder.RegisterType<Q>();
builder.RegisterType<R>();
var container = builder.Build();

(continues on next page)

44 Chapter 4. Resolving Services

Autofac Documentation, Release 7.0.0

(continued from previous page)

using(var scope = container.BeginLifetimeScope())
{
// Get the factory, just like it would be in the A class.
var factory = scope.Resolve<Func<int, P, B>>();

// First call, the B will be resolved with these parameters:
var b1 = factory(10, new P());

// Second call, the B will be the SAME even though the
// parameters changed because B is registered InstancePerLifetimeScope.
var b2 = factory(17, new P());

// In a unit test this would pass because they're the same.
Assert.Same(b1, b2);

}

Delegate factories allow you to provide a custom delegate as the signature for your factory function, which can
overcome challenges with relationships like Func<X, Y, B> like allowing for multiple parameters of the same time.
Delegate factories can be a powerful alternative for factory generation - check this feature out in the advanced topics
section.

Enumeration (IEnumerable, IList, ICollection)

Dependencies of an enumerable type provide multiple implementations of the same service (interface). This is helpful
in cases like message handlers, where a message comes in and more than one handler is registered to process the
message.

Let’s say you have a dependency interface defined like this:

public interface IMessageHandler
{
void HandleMessage(Message m);

}

Further, you have a consumer of dependencies like that where you need to have more than one registered and the
consumer needs all of the registered dependencies:

public class MessageProcessor
{
private IEnumerable<IMessageHandler> _handlers;

public MessageProcessor(IEnumerable<IMessageHandler> handlers)
{
this._handlers = handlers;

}

public void ProcessMessage(Message m)
{
foreach(var handler in this._handlers)
{
handler.HandleMessage(m);

}
(continues on next page)

4.2. Implicit Relationship Types 45

Autofac Documentation, Release 7.0.0

(continued from previous page)

}
}

You can easily accomplish this using the implicit enumerable relationship type. Just register all of the dependencies
and the consumer, and when you resolve the consumer the set of all matching dependencies will be resolved as an
enumeration.

var builder = new ContainerBuilder();
builder.RegisterType<FirstHandler>().As<IMessageHandler>();
builder.RegisterType<SecondHandler>().As<IMessageHandler>();
builder.RegisterType<ThirdHandler>().As<IMessageHandler>();
builder.RegisterType<MessageProcessor>();
var container = builder.Build();

using(var scope = container.BeginLifetimeScope())
{
// When processor is resolved, it'll have all of the
// registered handlers passed in to the constructor.
var processor = scope.Resolve<MessageProcessor>();
processor.ProcessMessage(m);

}

The enumerable support will return an empty set if no matching items are registered in the container. That is,
using the above example, if you don’t register any IMessageHandler implementations, this will break:

// This throws an exception - none are registered!
scope.Resolve<IMessageHandler>();

However, this works:

// This returns an empty list, NOT an exception:
scope.Resolve<IEnumerable<IMessageHandler>>();

This can create a bit of a “gotcha” where you might think you’ll get a null value if you inject something using this
relationship. Instead, you’ll get an empty list.

Metadata Interrogation (Meta, Meta<B, X>)

The Autofac metadata feature lets you associate arbitrary data with services that you can use to make decisions when
resolving. If you want to make those decisions in the consuming component, use the Meta relationship, which will
provide you with a string/object dictionary of all the object metadata:

public class A
{
Meta _b;

public A(Meta b) { _b = b; }

public void M()
{
if (_b.Metadata["SomeValue"] == "yes")
{

(continues on next page)

46 Chapter 4. Resolving Services

Autofac Documentation, Release 7.0.0

(continued from previous page)

_b.Value.DoSomething();
}

}
}

You can use strongly-typed metadata as well, by specifying the metadata type in the Meta<B, X> relationship:

public class A
{
Meta<B, BMetadata> _b;

public A(Meta<B, BMetadata> b) { _b = b; }

public void M()
{
if (_b.Metadata.SomeValue == "yes")
{
_b.Value.DoSomething();

}
}

}

If you have a lazy dependency for which you also need metadata, you can use Lazy<B,M> instead of the longer
Meta<Lazy, M>.

Keyed Service Lookup (IIndex<X, B>)

In the case where you have many of a particular item (like the IEnumerable relationship) but you want to pick one
based on service key, you can use the IIndex<X, B> relationship. First, register your services with keys:

var builder = new ContainerBuilder();
builder.RegisterType<DerivedB>().Keyed("first");
builder.RegisterType<AnotherDerivedB>().Keyed("second");
builder.RegisterType<A>();
var container = builder.Build();

Then consume the IIndex<X, B> to get a dictionary of keyed services:

public class A
{
IIndex<string, B> _b;

public A(IIndex<string, B> b) { _b = b; }

public void M()
{
var b = this._b["first"];
b.DoSomething();

}
}

4.2. Implicit Relationship Types 47

Autofac Documentation, Release 7.0.0

4.2.2 Composing Relationship Types

Relationship types can be composed, so:

IEnumerable<Func<Owned<ITask>>>

Is interpreted correctly to mean:

• All implementations, of

• Factories, that return

• Lifetime-controlled

• ITask services

4.2.3 Relationship Types and Container Independence

The custom relationship types in Autofac based on standard .NET types don’t force you to bind your application more
tightly to Autofac. They give you a programming model for container configuration that is consistent with the way you
write other components (vs. having to know a lot of specific container extension points and APIs that also potentially
centralize your configuration).

For example, you can still create a custom ITaskFactory in your core model, but provide an AutofacTaskFactory
implementation based on Func<Owned<ITask>> if that is desirable.

Note that some relationships are based on types that are in Autofac (e.g., IIndex<X, B>). Using those relationship
types do tie you to at least having a reference to Autofac, even if you choose to use a different IoC container for the
actual resolution of services.

You may also be interested in checking out the list of advanced topics to learn about named and keyed services, working
with component metadata, and other service resolution related topics.

48 Chapter 4. Resolving Services

CHAPTER

FIVE

CONTROLLING SCOPE AND LIFETIME

You may recall from the registration topic that you add components to the container that implement services. You
then end up resolving services and using those service instances to do your work. However, you still might wonder. . .

• When do components get instantiated?

• When do components get disposed?

• How can I ensure a singleton is correctly shared in my application?

• How do I control any of this?

Note: Most of the content here is based on Nick Blumhardt’s Autofac lifetime primer. While some things in Autofac
have changed over time, the concepts described there remain valid and may be helpful in understanding lifetime scopes.

5.1 Basic Concepts and Terminology

The lifetime of a service is how long the service instance will live in your application - from the original instantiation
to disposal. For example, if you “new up” an object that implements IDisposable and then later call Dispose() on it,
the lifetime of that object is from the time you instantiated it all the way through disposal (or garbage collection if you
didn’t proactively dispose it).

// A lifetime analogy in plain C#:
using (var component = new DisposableComponent())
{
// The "lifetime" of the component here is from
// the point at which the constructor is called
// until the time Dispose() is called.

}

The scope of a service is the area in the application where that service can be shared with other components that
consume it. For example, in your application you may have a global static singleton - the “scope” of that global object
instance would be the whole application. On the other hand, you might create a local variable in a for loop that makes
use of the global singleton - the local variable has a much smaller scope than the global.

// Scope in Autofac is somewhat analogous to variable
// scoping in C#.
//
// The "scope" of this static string is global - it
// can be accessed by anything.
public static string Singleton = "single-instance";
using (var component = new DisposableComponent())

(continues on next page)

49

http://nblumhardt.com/2011/01/an-autofac-lifetime-primer/
https://msdn.microsoft.com/en-us/library/system.idisposable.aspx

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
// The scope of "component" is just within these
// braces. You can't use it out there, but the
// component can use the shared singleton.
for (var i = 0; i < 10; i++)
{
// The scope of "i" is only inside the for loop,
// but the singleton is still available, as is
// the component.
component.DoWork(Singleton, i);

}
}

The concept of a lifetime scope in Autofac combines these two notions. Effectively, a lifetime scope equates with a
unit of work in your application. A unit of work might begin a lifetime scope at the start, then services required for
that unit of work get resolved from a lifetime scope. As you resolve services, Autofac tracks disposable (IDisposable)
components that are resolved. At the end of the unit of work, you dispose of the associated lifetime scope and Autofac
will automatically clean up/dispose of the resolved services.

The two important things lifetime scopes control are sharing and disposal.

• Lifetime scopes are nestable and they control how components are shared. For example, a “singleton” service
might be resolved from a root lifetime scope while individual units of work may require their own instances of
other services. You can determine how a component is shared by setting its instance scope at registration.

• Lifetime scopes track disposable objects and dispose of them when the lifetime scope is disposed. For
example, if you have a component that implements IDisposable and you resolve it from a lifetime scope, the
scope will hold onto it and dispose of it for you so your service consumers don’t have to know about the underlying
implementation. You have the ability to control this behavior or add new disposal behavior if you choose.

As you work in your application, it’s good to remember these concepts so you make the most efficient use of your
resources.

It is important to always resolve services from a lifetime scope and not the root container. Due to
the disposal tracking nature of lifetime scopes, if you resolve a lot of disposable components from the
container (the “root lifetime scope”), you may inadvertently cause yourself a memory leak. The root
container will hold references to those disposable components for as long as it lives (usually the lifetime
of the application) so it can dispose of them. You can change disposal behavior if you choose, but it’s a
good practice to only resolve from a scope. If Autofac detects usage of a singleton or shared component,
it will automatically place it in the appropriate tracking scope.

50 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

5.2 Scopes and Hierarchy

The easiest way to visualize lifetime scopes is as a hierarchy, like a tree. You start with the root container - the root
lifetime scope - and each unit of work (web request, etc.) - each child lifetime scope - branches off from there.

When you build an Autofac container, what you’re creating is that root container/lifetime scope. Application integration
packages or application code can create child lifetime scopes from the container, or even create children from other
children.

Lifetime scopes help determine where dependencies come from. In general, a component will try to get its dependencies
from the lifetime scope resolving the component. For example, if you’re in one of the child lifetime scopes and try to
resolve something, Autofac will try to get all of the component’s dependencies from the child scope.

What affects this mechanism is the “lifetime” aspect of “lifetime scope.” Some components, like singletons need to be
shared across multiple scopes. This affects how dependencies get located. The “basic rules” are:

• A child lifetime scope can get dependencies from parent scopes, but a parent scope may not reach down into a
child scope. (You can locate things by moving “up the tree” but you can’t move “down the tree.”)

• A component will get its dependencies from the scope that owns the component even if the component is resolved
by a scope further down the tree. We’ll discuss this below with an example on singleton lifetime.

5.2. Scopes and Hierarchy 51

Autofac Documentation, Release 7.0.0

Part of the job of the lifetime scope is to handle disposal of the components you resolve. When you resolve a component
that implements IDisposable, the owning lifetime scope will hold a reference to the component so it can be properly
disposed when the scope is disposed. You can dig deeper into how to work with disposal if you like, but some basic
things to consider:

• If you resolve IDisposable items from the root lifetime scope (container) they will be held until the container
is disposed, which is generally at application end. This can cause a memory leak. Always try to resolve things
from child lifetime scopes and dispose of the scopes when you’re done with them.

• Disposing a parent lifetime scope does not automatically dispose of the children. Using the diagram as an exam-
ple, if you dispose of the root lifetime scope it will not dispose of the four child scopes out there. It’s up to you
as the creator of lifetime scopes to responsibly dispose them.

• If you dispose a parent scope but keep using the child scope, things will fail. You can’t resolve dependencies
from a disposed scope. It’s recommended you dispose scopes in the reverse order created.

You can read more about working with lifetime scopes (including more code examples!), component disposal and the
different instance scopes available in the respective documentation.

5.3 Example: Singleton Lifetime

Earlier we noted that a component will get its dependencies from the scope that owns the component. Let’s dive into
this with an example: singletons.

When you declare a singleton, it’s owned by the scope in which it’s registered.

• If you declare a singleton when building your container, it’s held by the root lifetime scope. When you resolve a
singleton registered this way, all of its dependencies will come from the root scope.

• When creating a child lifetime scope, you can add singletons - those will be held by the child lifetime scope in
which they’re registered. When you resolve it, all of its dependencies will come from that child lifetime scope.

Doing it this way ensures you can’t dispose dependencies out from under the singleton; and that you won’t create a
memory leak by holding references to things in child scopes after the scope is disposed.

Let’s say you have a couple of classes like this:

public class Component
{
private readonly Dependency _dep;

public string Name => this._dep.Name;

public Component(Dependency dep)
{
this._dep = dep;

}
}

public class Dependency
{
public string Name { get; }

public Dependency(string name)
{
this.Name = name;

(continues on next page)

52 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

(continued from previous page)

}
}

Now let’s say you have some code that builds a container and uses these classes.

var builder = new ContainerBuilder();

// A singleton declared at container build
// time will be owned by the root scope and get
// all dependencies from the root scope.
builder.RegisterType<Component>()

.SingleInstance();

// Anything that resolves a Dependency from
// the root lifetime scope will see the name
// as 'root'
builder.Register(ctx => new Dependency("root"));

var container = builder.Build();

// Resolve the component from the root lifetime scope.
var rootComp = container.Resolve<Component>();

// This will show "root"
Console.WriteLine(rootComp.Name);

// Even if we override the Dependency in a child
// scope, it'll still show "root"
using (var child1 = container.BeginLifetimeScope(

b => b.Register(ctx => new Dependency("child1")))
{
child1Comp = child1.Resolve<Component>();
Console.WriteLine(child1Comp.Name);

}

// You can override the singleton by adding a new
// singleton in a child scope. This one will be
// owned by the child and will work in its children,
// but it doesn't override at the root scope.
using (var child2 = container.BeginLifetimeScope(

b => {
b.RegisterType<Component>().SingleInstance();
b.Register(ctx => new Dependency("child2");

}))
{
var child2Comp = child2.Resolve<Component>();

// This will show "child2"
Console.WriteLine(child2Comp.Name);

// rootComp and child2Comp are TWO DIFFERENT SINGLETONS.
Debug.Assert(rootComp != child2Comp);

(continues on next page)

5.3. Example: Singleton Lifetime 53

Autofac Documentation, Release 7.0.0

(continued from previous page)

using (var child2SubScope = child2.BeginLifetimeScope(
b => b.Register(ctx => new Dependency("child2SubScope")))

{
var child2SubComp = child2SubScope.Resolve<Component>();

// This will show "child2"
Console.WriteLine(child2SubComp.Name);

// child2Comp and child2SubComp are THE SAME.
Debug.Assert(child2Comp == child2SubComp);

}
}

In picture format, it looks like this:

As you can see, lifetime scope plays a role not only in how long a component lives but also where it gets its dependencies.
As you design your application, you need to consider this so you don’t run into issues where you think you’re overriding
a value but you’re foiled by the component’s declared lifetime. You can read more about the options for component
instance scope in our instance scope docs.

54 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

5.4 Example: Web Application

Let’s look at a web application as a more concrete example to illustrate lifetime scope usage. Say you have the following
scenario:

• You have a global singleton logging service.

• Two simultaneous requests come in to the web application.

• Each request is a logical “unit of work” and each requires its own order processing service.

• Each controller needs to log information to the logging service.

In this scenario, you’d have a root lifetime scope that contains the singleton logging service and you’d have one child
lifetime scope per request, each with its own controller instance.

From a class registration standpoint, it might look like this:

var builder = new ContainerBuilder();

// The logger is a singleton - shared everywhere.
builder.RegisterType<Logger>()

.As<ILogger>()

.SingleInstance();

// Controllers are created per lifetime scope. They
// take an ILogger as a parameter.
builder.RegisterType<Controller>()

.InstancePerLifetimeScope();

var container = builder.Build();

As web requests come in, lifetime scopes might look like this:

5.4. Example: Web Application 55

Autofac Documentation, Release 7.0.0

A rough sequence of events for a web app framework like ASP.NET Core goes like this:

1. When a web request comes in, the web application framework creates a child lifetime scope - the “request lifetime
scope.”

2. The web application framework resolves the controller instance from the request lifetime scope. Since the con-
troller is registered as “instance per lifetime scope,” this instance will be shared by any components within that
request but will not be shared with other requests.

3. The logging service, registered as a singleton at the application level, gets injected as a dependency into each
controller instance.

4. At the end of each web request, the request lifetime scope will be disposed and the controllers will be garbage
collected. The logger will remain alive and cached at the root lifetime scope so it can continue to be injected for
the rest of the application lifetime.

5. At the end of the web application (during shutdown) the web app framework should dispose of the root container
and release the logger.

5.5 Additional Topics to Explore

5.5.1 Working with Lifetime Scopes

Creating a New Lifetime Scope

You can create a lifetime scope by calling the BeginLifetimeScope()method on any existing lifetime scope, starting
with the root container. Lifetime scopes are disposable and they track component disposal, so make sure you
always call “Dispose()”” or wrap them in “using” statements.

56 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

using(var scope = container.BeginLifetimeScope())
{
// Resolve services from a scope that is a child
// of the root container.
var service = scope.Resolve<IService>();

// You can also create nested scopes...
using(var unitOfWorkScope = scope.BeginLifetimeScope())
{
var anotherService = unitOfWorkScope.Resolve<IOther>();

}
}

Tagging a Lifetime Scope

There are some cases where you want to share services across units of work but you don’t want those services to be
shared globally like singletons. A common example is “per-request” lifetimes in web applications. (You can read more
about per-request scoping in the “Instance Scope” topic.) In this case, you’d want to tag your lifetime scope and register
services as InstancePerMatchingLifetimeScope().

For example, say you have a component that sends emails. A logical transaction in your system may need to send more
than one email, so you can share that component across individual pieces of the logical transaction. However, you don’t
want the email component to be a global singleton. Your setup might look something like this:

// Register your transaction-level shared component
// as InstancePerMatchingLifetimeScope and give it
// a "known tag" that you'll use when starting new
// transactions.
var builder = new ContainerBuilder();
builder.RegisterType<EmailSender>()

.As<IEmailSender>()

.InstancePerMatchingLifetimeScope("transaction");

// Both the order processor and the receipt manager
// need to send email notifications.
builder.RegisterType<OrderProcessor>()

.As<IOrderProcessor>();
builder.RegisterType<ReceiptManager>()

.As<IReceiptManager>();

var container = builder.Build();

// Create transaction scopes with a tag.
using(var transactionScope = container.BeginLifetimeScope("transaction"))
{
using(var orderScope = transactionScope.BeginLifetimeScope())
{
// This would resolve an IEmailSender to use, but the
// IEmailSender would "live" in the parent transaction
// scope and be shared across any children of the
// transaction scope because of that tag.

(continues on next page)

5.5. Additional Topics to Explore 57

Autofac Documentation, Release 7.0.0

(continued from previous page)

var op = orderScope.Resolve<IOrderProcessor>();
op.ProcessOrder();

}

using(var receiptScope = transactionScope.BeginLifetimeScope())
{
// This would also resolve an IEmailSender to use, but it
// would find the existing IEmailSender in the parent
// scope and use that. It'd be the same instance used
// by the order processor.
var rm = receiptScope.Resolve<IReceiptManager>();
rm.SendReceipt();

}
}

Again, you can read more about tagged scopes and per-request scoping in the “Instance Scope” topic.

Adding Registrations to a Lifetime Scope

Autofac allows you to add registrations “on the fly” as you create lifetime scopes. This can help you when you need
to do a sort of “spot weld” limited registration override or if you generally just need some additional stuff in a scope
that you don’t want to register globally. You do this by passing a lambda to BeginLifetimeScope() that takes a
ContainerBuilder and adds registrations.

using(var scope = container.BeginLifetimeScope(
builder =>
{
builder.RegisterType<Override>().As<IService>();
builder.RegisterModule<MyModule>();

}))
{
// The additional registrations will be available
// only in this lifetime scope.

}

5.5.2 Instance Scope

Instance scope determines how an instance is shared between requests for the same service. Note that you should be
familiar with the concept of lifetime scopes to better understand what’s happening here.

When a request is made for a service, Autofac can return a single instance (single instance scope), a new instance (per
dependency scope), or a single instance within some kind of context, e.g. a thread or an HTTP request (per lifetime
scope).

This applies to instances returned from an explicit Resolve() call as well as instances created internally by the con-
tainer to satisfy the dependencies of another component.

Note: Choosing the right lifetime scope will help you avoid captive dependencies and other pitfalls where a component
lives too long or not long enough. It is up to the developer to make the correct choice for each of their application
components.

58 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

• Instance Per Dependency

• Single Instance

• Instance Per Lifetime Scope

• Instance Per Matching Lifetime Scope

• Instance Per Request

• Instance Per Owned

• Thread Scope

Instance Per Dependency

Also called ‘transient’ or ‘factory’ in other containers. Using per-dependency scope, a unique instance will be re-
turned from each request for a service.

This is the default if no other option is specified.

var builder = new ContainerBuilder();

// This...
builder.RegisterType<Worker>();

// ...is the same as this:
builder.RegisterType<Worker>().InstancePerDependency();

When you resolve a component that is instance per dependency, you get a new one each time.

using(var scope = container.BeginLifetimeScope())
{
for(var i = 0; i < 100; i++)
{
// Every one of the 100 Worker instances
// resolved in this loop will be brand new.
var w = scope.Resolve<Worker>();
w.DoWork();

}
}

Single Instance

This is also known as ‘singleton.’ Using single instance scope, one instance is returned from all requests in the root
and all nested scopes.

var builder = new ContainerBuilder();
builder.RegisterType<Worker>().SingleInstance();

When you resolve a single instance component, you always get the same instance no matter where you request it.

// It's generally not good to resolve things from the
// container directly, but for singleton demo purposes

(continues on next page)

5.5. Additional Topics to Explore 59

Autofac Documentation, Release 7.0.0

(continued from previous page)

// we do...
var root = container.Resolve<Worker>();

// We can resolve the worker from any level of nested
// lifetime scope, any number of times.
using(var scope1 = container.BeginLifetimeScope())
{
for(var i = 0; i < 100; i++)
{
var w1 = scope1.Resolve<Worker>();
using(var scope2 = scope1.BeginLifetimeScope())
{
var w2 = scope2.Resolve<Worker>();

// root, w1, and w2 are always literally the
// same object instance. It doesn't matter
// which lifetime scope it's resolved from
// or how many times.

}
}

}

Instance Per Lifetime Scope

This scope applies to nested lifetimes. A component with per-lifetime scope will have at most a single instance per
nested lifetime scope.

This is useful for objects specific to a single unit of work that may need to nest additional logical units of work. Each
nested lifetime scope will get a new instance of the registered dependency.

var builder = new ContainerBuilder();
builder.RegisterType<Worker>().InstancePerLifetimeScope();

When you resolve the instance per lifetime scope component, you get a single instance per nested scope (e.g., per unit
of work).

using(var scope1 = container.BeginLifetimeScope())
{
for(var i = 0; i < 100; i++)
{
// Every time you resolve this from within this
// scope you'll get the same instance.
var w1 = scope1.Resolve<Worker>();

}
}

using(var scope2 = container.BeginLifetimeScope())
{
for(var i = 0; i < 100; i++)
{
// Every time you resolve this from within this
// scope you'll get the same instance, but this

(continues on next page)

60 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

(continued from previous page)

// instance is DIFFERENT than the one that was
// used in the above scope. New scope = new instance.
var w2 = scope2.Resolve<Worker>();

}
}

using(var scope3 = container.BeginLifetimeScope())
{
var w3 = scope3.Resolve<Worker>();
using(var scope4 = scope3.BeginLifetimeScope())
{
// w3 and w4 are DIFFERENT because they come from
// two different scopes.
var w4 = scope4.Resolve<Worker>();

}
}

// The CONTAINER is a lifetime scope! If you resolve an
// InstancePerLifetimeScope service from the container,
// that instance will live for the duration of the container
// and will effectively be a singleton. It will be held
// for the lifetime of the container in case something else
// tries to resolve a Worker from the container.
var w5 = container.Resolve<Worker>();
using(var scope5 = container.BeginLifetimeScope())
{
// w5 and w6 are DIFFERENT.
var w6 = scope5.Resolve<Worker>();

}

Instance Per Matching Lifetime Scope

This is similar to the ‘instance per lifetime scope’ concept above, but allows more precise control over instance sharing.

When you create a nested lifetime scope, you have the ability to “tag” or “name” the scope. A component with per-
matching-lifetime scope will have at most a single instance per nested lifetime scope that matches a given name.
This allows you to create a sort of “scoped singleton” where other nested lifetime scopes can share an instance of a
component without declaring a global shared instance.

This is useful for objects specific to a single unit of work, e.g. an HTTP request, as a nested lifetime can be created per
unit of work. If a nested lifetime is created per HTTP request, then any component with per-lifetime scope will have
an instance per HTTP request. (More on per-request lifetime scope below.)

In most applications, only one level of container nesting will be sufficient for representing the scope of units of work. If
more levels of nesting are required (e.g. something like global->request->transaction) components can be configured
to be shared at a particular level in the hierarchy using tags.

var builder = new ContainerBuilder();
builder.RegisterType<Worker>().InstancePerMatchingLifetimeScope("my-request");

The supplied tag value is associated with a lifetime scope when you start it. You will get an exception if you try to
resolve a per-matching-lifetime-scope component when there’s no correctly named lifetime scope.

5.5. Additional Topics to Explore 61

Autofac Documentation, Release 7.0.0

// Create the lifetime scope using the tag.
using(var scope1 = container.BeginLifetimeScope("my-request"))
{
for(var i = 0; i < 100; i++)
{
var w1 = scope1.Resolve<Worker>();
using(var scope2 = scope1.BeginLifetimeScope())
{
var w2 = scope2.Resolve<Worker>();

// w1 and w2 are always the same object
// instance because the component is per-matching-lifetime-scope,
// so it's effectively a singleton within the
// named scope.

}
}

}

// Create another lifetime scope using the tag.
using(var scope3 = container.BeginLifetimeScope("my-request"))
{
for(var i = 0; i < 100; i++)
{
// w3 will be DIFFERENT than the worker resolved in the
// earlier tagged lifetime scope.
var w3 = scope3.Resolve<Worker>();
using(var scope4 = scope3.BeginLifetimeScope())
{
var w4 = scope4.Resolve<Worker>();

// w3 and w4 are always the same object because
// they're in the same tagged scope, but they are
// NOT the same as the earlier workers (w1, w2).

}
}

}

// You can't resolve a per-matching-lifetime-scope component
// if there's no matching scope.
using(var noTagScope = container.BeginLifetimeScope())
{
// This throws an exception because this scope doesn't
// have the expected tag and neither does any parent scope!
var fail = noTagScope.Resolve<Worker>();

}

62 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

Instance Per Request

Some application types naturally lend themselves to “request” type semantics, for example ASP.NET web forms and
MVC applications. In these application types, it’s helpful to have the ability to have a sort of “singleton per request.”

Instance per request builds on top of instance per matching lifetime scope by providing a well-known lifetime scope
tag, a registration convenience method, and integration for common application types. Behind the scenes, though, it’s
still just instance per matching lifetime scope.

What this means is that if you try to resolve components that are registered as instance-per-request but there’s no current
request. . . you’re going to get an exception.

There is a detailed FAQ outlining how to work with per-request lifetimes.

var builder = new ContainerBuilder();
builder.RegisterType<Worker>().InstancePerRequest();

ASP.NET Core uses Instance Per Lifetime Scope rather than Instance Per Request. See the ASP.NET Core inte-
gration doc for more.

Instance Per Owned

The Owned<T> implicit relationship type creates new nested lifetime scopes. It is possible to scope dependencies to
the owned instance using the instance-per-owned registrations.

var builder = new ContainerBuilder();
builder.RegisterType<MessageHandler>();
builder.RegisterType<ServiceForHandler>().InstancePerOwned<MessageHandler>();

In this example the ServiceForHandler service will be scoped to the lifetime of the owned MessageHandler in-
stance.

using(var scope = container.BeginLifetimeScope())
{
// The message handler itself as well as the
// resolved dependent ServiceForHandler service
// is in a tiny child lifetime scope under
// "scope." Note that resolving an Owned<T>
// means YOU are responsible for disposal.
var h1 = scope.Resolve<Owned<MessageHandler>>();
h1.Dispose();

}

Thread Scope

Autofac can enforce that objects bound to one thread will not satisfy the dependencies of a component bound to another
thread. While there is not a convenience method for this, you can do it using lifetime scopes.

var builder = new ContainerBuilder();
builder.RegisterType<MyThreadScopedComponent>()

.InstancePerLifetimeScope();
var container = builder.Build();

Then, each thread gets its own lifetime scope:

5.5. Additional Topics to Explore 63

Autofac Documentation, Release 7.0.0

void ThreadStart()
{
using (var threadLifetime = container.BeginLifetimeScope())
{
var thisThreadsInstance = threadLifetime.Resolve<MyThreadScopedComponent>();

}
}

IMPORTANT: Given the multithreaded scenario, you must be very careful that the parent scope doesn’t get
disposed out from under the spawned thread. You can get into a bad situation where components can’t be resolved
if you spawn the thread and then dispose the parent scope.

Each thread executing through ThreadStart()will then get its own instance of MyThreadScopedComponent - which
is essentially a “singleton” in the lifetime scope. Because scoped instances are never provided to outer scopes, it is easier
to keep thread components separated.

You can inject a parent lifetime scope into the code that spawns the thread by taking an ILifetimeScope parameter.
Autofac knows to automatically inject the current lifetime scope and you can create a nested scope from that.

public class ThreadCreator
{
private ILifetimeScope _parentScope;

public ThreadCreator(ILifetimeScope parentScope)
{
this._parentScope = parentScope;

}

public void ThreadStart()
{
using (var threadLifetime = this._parentScope.BeginLifetimeScope())
{
var thisThreadsInstance = threadLifetime.Resolve<MyThreadScopedComponent>();

}
}

}

If you would like to enforce this even more heavily, use instance per matching lifetime scope (see above) to asso-
ciate the thread-scoped components with the inner lifetime (they’ll still have dependencies from the factory/singleton
components in the outer container injected.) The result of this approach looks something like:

64 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

The ‘contexts’ in the diagram are the containers created with BeginLifetimeScope().

5.5.3 Captive Dependencies

A “captive dependency” occurs when a component intended to live for a short amount of time gets held by a component
that lives for a long time. This blog article from Mark Seemann does a good job of explaining the concept.

Autofac does not necessarily prevent you from creating captive dependencies. You may find times when you get
a resolution exception because of the way a captive is set up, but you won’t always. Stopping captive dependencies is
the responsibility of the developer.

General Rule

The general rule to avoid captive dependencies:

The lifetime of the consuming component should be less than or equal to the lifetime of the service being con-
sumed.

Basically, don’t let a singleton take an instance-per-request dependency because it’ll be held too long.

5.5. Additional Topics to Explore 65

http://blog.ploeh.dk/2014/06/02/captive-dependency/

Autofac Documentation, Release 7.0.0

Simple Example

Say you have a web application that uses some information from the inbound request to determine the right database
to which a connection should be made. You might have the following components:

• A repository that takes in the current request and a database connection factory.

• The current request like an HttpContext that could be used to help decide the business logic.

• The database connection factory that takes some sort of parameter and returns the right database connection.

In this example, consider the lifetime scope that you’d want to use for each component. The current request context is
an obvious one - you want instance-per-request. What about the others?

For the repository, say you choose “singleton.” A singleton gets created one time and cached for the life of the appli-
cation. If you choose “singleton,” the request context will be passed in and held for the life of the application - even
after that current request is over, the stale request context will be held. The repository is long-lived, but holds on to a
shorter-life component. That’s a captive dependency.

However, say you make the repository “instance-per-request” - now it lives as long as the current request and no longer.
That’s exactly as long as the request context it needs, so now it’s not a captive. Both the repository and the request
context will be released at the same time (at the end of the request) and everything will be fine.

Taking it a step further, say you make the repository “instance-per-dependency” so you get a new one every time. This
is still OK because it is intended to live for a shorter time than the current request. It won’t hold onto the request for
too long, so there’s no captive.

The database connection factory goes through a similar thought process, but may have some different considerations.
Maybe the factory is expensive to instantiate or needs to maintain some internal state to work correctly. You may not
want it to be “instance-per-request” or “instance-per-dependency.” You may actually need it to be a singleton.

It’s OK for shorter-lived dependencies to take on longer-lived dependencies. If your repository is “instance-per-
request” or “instance-per-dependency” you’ll still be good. The database connection factory intentionally lives longer.

Code Example

Here’s a unit test that shows what it looks like to forcibly create a captive dependency. In this example, a “rule manager”
is used to deal with a set of “rules” that get used through an application.

public class RuleManager
{
public RuleManager(IEnumerable<IRule> rules)
{

this.Rules = rules;
}

public IEnumerable<IRule> Rules { get; private set; }
}

public interface IRule { }

public class SingletonRule : IRule { }

public class InstancePerDependencyRule : IRule { }

[Fact]
(continues on next page)

66 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

(continued from previous page)

public void CaptiveDependency()
{

var builder = new ContainerBuilder();

// The rule manager is a single-instance component. It
// will only ever be instantiated one time and the cached
// instance will be used thereafter. It will always be resolved
// from the root lifetime scope (the container) because
// it needs to be shared.
builder.RegisterType<RuleManager>()

.SingleInstance();

// This rule is registered instance-per-dependency. A new
// instance will be created every time it's requested.
builder.RegisterType<InstancePerDependencyRule>()

.As<IRule>();

// This rule is registered as a singleton. Like the rule manager
// it will only ever be resolved one time and will be resolved
// from the root lifetime scope.
builder.RegisterType<SingletonRule>()

.As<IRule>()

.SingleInstance();

using (var container = builder.Build())
using (var scope = container.BeginLifetimeScope("request"))
{
// The manager will be a singleton. It will contain
// a reference to the singleton SingletonRule, which is
// fine. However, it will also hold onto an InstancePerDependencyRule
// which may not be OK. The InstancePerDependencyRule that it
// holds will live for the lifetime of the container inside the
// RuleManager and will last until the container is disposed.
var manager = scope.Resolve<RuleManager>();

}
}

Note the example above doesn’t directly show it, but if you were to dynamically add registrations for rules in
the container.BeginLifetimeScope() call, those dynamic registrations would not be included in the resolved
RuleManager. The RuleManager, being a singleton, gets resolved from the root container where the dynamically
added registrations don’t exist.

Another code example shows how you may get an exception when creating a captive dependency that ties incorrectly
to a child lifetime scope.

public class RuleManager
{
public RuleManager(IEnumerable<IRule> rules)
{

this.Rules = rules;
}

public IEnumerable<IRule> Rules { get; private set; }
(continues on next page)

5.5. Additional Topics to Explore 67

Autofac Documentation, Release 7.0.0

(continued from previous page)

}

public interface IRule { }

public class SingletonRule : IRule
{
public SingletonRule(InstancePerRequestDependency dep) { }

}

public class InstancePerRequestDependency : IRule { }

[Fact]
public void CaptiveDependency()
{

var builder = new ContainerBuilder();

// Again, the rule manager is a single-instance component,
// resolved from the root lifetime and cached thereafter.
builder.RegisterType<RuleManager>()

.SingleInstance();

// This rule is registered as a singleton. Like the rule manager
// it will only ever be resolved one time and will be resolved
// from the root lifetime scope.
builder.RegisterType<SingletonRule>()

.As<IRule>()

.SingleInstance();

// This rule is registered on a per-request basis. It only exists
// during the request.
builder.RegisterType<InstancePerRequestDependency>()

.As<IRule>()

.InstancePerMatchingLifetimeScope("request");

using (var container = builder.Build())
using (var scope = container.BeginLifetimeScope("request"))
{
// PROBLEM: When the SingletonRule is resolved as part of the dependency
// chain for the rule manager, the InstancePerRequestDependency in
// the rule constructor will fail to be resolved because the rule
// is coming from the root lifetime scope but the InstancePerRequestDependency
// doesn't exist there.
Assert.Throws<DependencyResolutionException>(() => scope.Resolve<RuleManager>());

}
}

68 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

Exception to the Rule

Given the developer of the application is ultimately responsible for determining whether captives are OK or not, the
developer may determine that it’s acceptable for a singleton, for example, to take an “instance-per-dependency” service.

For example, maybe you have a caching class that is intentionally set up to cache things for only the lifetime of the
consuming component. If the consumer is a singleton, the cache can be used to store things for the whole app lifetime;
if the consumer is “instance-per-request” then it only stores data for a single web request. In a case like that, you may
end up with a longer-lived component taking a dependency on a shorter-lived component intentionally.

This is acceptable as long as the application developer understands the consequences of setting things up with such
lifetimes. Which is to say, if you’re going to do it, do it intentionally rather than accidentally.

5.5.4 Disposal

Resources obtained within a unit of work - database connections, transactions, authenticated sessions, file handles etc.
- should be disposed of when that work is complete. .NET provides the IDisposable interface to aid in this more
deterministic notion of disposal.

Some IoC containers need to be told explicitly to dispose of a particular instance, through a method like
ReleaseInstance(). This makes it very difficult to guarantee that the correct disposal semantics are used.

• Switching implementations from a non-disposable to a disposable component can mean modifying client code.

• Client code that may have ignored disposal when using shared instances will almost certainly fail to clean up
when switched to non-shared instances.

Autofac solves these problems using lifetime scopes as a way of disposing of all of the components created during a
unit of work.

using (var scope = container.BeginLifetimeScope())
{
scope.Resolve<DisposableComponent>().DoSomething();

// Components for scope disposed here, at the
// end of the 'using' statement when the scope
// itself is disposed.

}

A lifetime scope is created when a unit of work begins, and when that unit of work is complete the nested container
can dispose all of the instances within it that are out of scope.

Registering Components

Autofac can automatically dispose of some components, but you have the ability to manually specify a disposal mech-
anism, too.

Components must be registered as InstancePerDependency() (the default) or some variation of
InstancePerLifetimeScope() (e.g., InstancePerMatchingLifetimeScope() or InstancePerRequest()).

If you have singleton components (registered as SingleInstance()) they will live for the life of the container.
Since container lifetimes are usually the application lifetime, it means the component won’t be disposed until the end
of the application.

5.5. Additional Topics to Explore 69

Autofac Documentation, Release 7.0.0

Automatic Disposal

To take advantage of automatic deterministic disposal, your component must implement IDisposable. You can then
register your component as needed and at the end of each lifetime scope in which the component is resolved, the
Dispose() method on the component will be called.

var builder = new ContainerBuilder();
builder.RegisterType<SomeDisposableComponent>();
var container = builder.Build();
// Create nested lifetime scopes, resolve
// the component, and dispose of the scopes.
// Your component will be disposed with the scope.

Asynchronous Disposal Support

If your components’ disposal behavior requires some I/O activity, such as flushing a buffer to a file, or sending a packet
over the network to close a connection, then you may want to consider implementing the new .NET IAsyncDisposable
interface.

In Autofac 5.0, support was added for the IAsyncDisposable interface, so lifetime scopes can now be disposed of
asynchronously:

class MyComponent : IDisposable, IAsyncDisposable
{
INetworkResource myResource;

public void Dispose()
{
myResource.Close();

}

public async ValueTask DisposeAsync()
{
await myResource.CloseAsync();

}
}

// ...

await using (var scope = container.BeginLifetimeScope())
{

var service = scope.Resolve<MyComponent>():

// DisposeAsync will be called on MyComponent
// when the using block exits.

}

When a lifetime scope is disposed of asynchronously, any registered components that implement IAsyncDisposable
in addition to IDisposable will have their DisposeAsync() method invoked, instead of the Dispose() method.

If a component only implements the synchronous Dispose() method, then it will still be invoked when the lifetime
scope is disposed asynchronously.

When using Autofac with the ASP.NET Core Integration, all per-request lifetime scopes are disposed of asynchronously.

70 Chapter 5. Controlling Scope and Lifetime

https://docs.microsoft.com/en-us/dotnet/api/system.iasyncdisposable?view=netstandard-2.1

Autofac Documentation, Release 7.0.0

Important: While you do not have to implement IDisposable if you implement IAsyncDisposable, we strongly
recommend you do so.

If your component only implements IAsyncDisposable, but someone disposes of the scope synchronously, then
Autofac will be forced to use a sync-over-async blocking dispose, and will raise a diagnostic warning:

AUTOFAC: A synchronous Dispose has been attempted, but the tracked object of type ‘AsyncComponent’
only implements IAsyncDisposable. This will result in an inefficient blocking dispose. Consider either
implementing IDisposable on ‘AsyncComponent’ or disposing of the scope/container with DisposeAsync.

Specified Disposal

If your component doesn’t implement IDisposable but still requires some cleanup at the end of a lifetime scope, you
can use the OnRelease lifetime event.

var builder = new ContainerBuilder();
builder.RegisterType<SomeComponent>()

.OnRelease(instance => instance.CleanUp());
var container = builder.Build();
// Create nested lifetime scopes, resolve
// the component, and dispose of the scopes.
// Your component's "CleanUp()" method will be
// called when the scope is disposed.

Note that OnRelease() overrides the default handling of IDisposable.Dispose(). If your component both imple-
ments IDisposable and requires some other cleanup method, you will either need to manually call Dispose() in
OnRelease() or you will need to update your class so the cleanup method gets called from inside Dispose().

Disabling Disposal

Components are owned by the container by default and will be disposed by it when appropriate. To disable this, register
a component as having external ownership:

builder.RegisterType<SomeComponent>().ExternallyOwned();

The container will never call Dispose() or DisposeAsync() on an object registered with external ownership. It is
up to you to dispose of components registered in this fashion.

Another alternative for disabling disposal is to use the implicit relationship Owned<T> and owned instances. In this
case, rather than putting a dependency T in your consuming code, you put a dependency on Owned<T>. Your consuming
code will then be responsible for disposal.

public class Consumer
{
private Owned<DisposableComponent> _service;

public Consumer(Owned<DisposableComponent> service)
{
_service = service;

}

(continues on next page)

5.5. Additional Topics to Explore 71

Autofac Documentation, Release 7.0.0

(continued from previous page)

public void DoWork()
{
// _service is used for some task
_service.Value.DoSomething();

// Here _service is no longer needed, so
// it is released
_service.Dispose();

}
}

You can read more about Owned<T> in the owned instances topic.

Resolve Components from Lifetime Scopes

Lifetime scopes are created by calling BeginLifetimeScope(). The simplest way is in a using block. Use the
lifetime scopes to resolve your components and then dispose of the scope when the unit of work is complete.

using (var lifetime = container.BeginLifetimeScope())
{
var component = lifetime.Resolve<SomeComponent>();
// component, and any of its disposable dependencies, will
// be disposed of when the using block completes

}

Note that with Autofac integration libraries standard unit-of-work lifetime scopes will be created and disposed for you
automatically. For example, in Autofac’s ASP.NET MVC integration, a lifetime scope will be created for you at the
beginning of a web request and all components will generally be resolved from there. At the end of the web request,
the scope will automatically be disposed - no additional scope creation is required on your part. If you are using one
of the integration libraries, you should be aware of what automatically-created scopes are available for you.

You can read more about creating lifetime scopes here.

Child Scopes are NOT Automatically Disposed

While lifetime scopes themselves implement IDisposable, the lifetime scopes that you create are not automatically
disposed for you. If you create a lifetime scope, you are responsible for calling Dispose() on it to clean it up and
trigger the automatic disposal of components. This is done easily with a using statement, but if you create a scope
without a using, don’t forget to dispose of it when you’re done with it.

It’s important to distinguish between scopes you create and scopes the integration libraries create for you. You
don’t have to worry about managing integration scopes (like the ASP.NET request scope) - those will be done for you.
However, if you manually create your own scope, you will be responsible for cleaning it up.

72 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

Provided Instances

If you provide an instance registration to Autofac, Autofac will assume ownership of that instance and will handle its
disposal.

// If you do this, Autofac will dispose of the StringWriter
// instance when the container is disposed.
var output = new StringWriter();
builder.RegisterInstance(output)

.As<TextWriter>();

If you want to take control of the disposal of the instance yourself, you need to register the instance as
ExternallyOwned().

// Using ExternallyOwned means you will be responsible for
// disposing the StringWriter instead of Autofac.
var output = new StringWriter();
builder.RegisterInstance(output)

.As<TextWriter>()

.ExternallyOwned();

Advanced Hierarchies

The simplest and most advisable resource management scenario, demonstrated above, is two-tiered: there is a single
‘root’ container and a lifetime scope is created from this for each unit of work. It is possible to create more complex
hierarchies of containers and components, however, using tagged lifetime scopes.

5.5.5 Lifetime Events

Autofac exposes events that can be hooked at various stages in instance lifecycle. These are subscribed to during
component registration (or alternatively by attaching to the IComponentRegistration interface.

• OnPreparing

• OnActivating

• OnActivated

• OnRelease

OnPreparing

The OnPreparing event is raised when a new instance of a component is required, before OnActivating is invoked.

This event can be used to specify a custom set of parameter information that Autofac will consider when it creates a
new instance of the component.

The primary use case of this event is to mock or intercept the services that Autofac would normally pass as parameters
to component activation, by setting the Parameters property of the provided PreparingEventArgs argument with
any custom parameters.

5.5. Additional Topics to Explore 73

Autofac Documentation, Release 7.0.0

Tip: Before you use this event to set parameters, consider whether it may be more appropriate to define these at
registration time, using parameter registration.

OnActivating

The OnActivating event is raised before a component is used. Here you can:

• Switch the instance for another or wrap it in a proxy

• Do property injection or method injection

• Perform other initialization tasks

In some cases, such as with RegisterType<T>(), the concrete type registered is used for type resolution and used by
ActivatingEventArgs. For example, the following will fail with a class cast exception:

builder.RegisterType<TConcrete>() // FAILS: will throw at cast of TInterfaceSubclass
.As<TInterface>() // to type TConcrete
.OnActivating(e => e.ReplaceInstance(new TInterfaceSubclass()));

A simple workaround is to do the registration in two steps:

builder.RegisterType<TConcrete>().AsSelf();
builder.Register<TInterface>(c => c.Resolve<TConcrete>())

.OnActivating(e => e.ReplaceInstance(new TInterfaceSubclass()));

OnActivated

The OnActivated event is raised once a component is fully constructed. Here you can perform application-level tasks
that depend on the component being fully constructed - these should be rare.

OnRelease

The OnRelease event replaces the standard cleanup behavior for a component. The standard cleanup behavior of
components that implement IDisposable and that are not marked as ExternallyOwned() is to call the Dispose()
method. The standard cleanup behavior for components that do not implement IDisposable or are marked as exter-
nally owned is a no-op - to do nothing. OnRelease overrides this behavior with the provided implementation.

5.5.6 Running Code at Container Build

Autofac provides the ability for components to be notified or automatically activated when the container is built.

There are three automatic activation mechanisms available:

• Startable components

• Auto-activated components

• Container build callbacks

In all cases, at the time the container is built, the component will be activated.

74 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

Note: Avoid overusing startup logic: The ability to run startup logic on container build may feel like it’s also a good
fit for orchestrating general application startup logic. Application startup is a separate concern from dependency
management. Given the ordering and other challenges you may run into, it is recommended you keep application
startup logic separate from dependency management logic.

• Startable Components

• Auto-Activated Components

• Build Callbacks

• Lifetime Scopes

• Tips

Startable Components

A startable component is one that is activated by the container when the container is initially built and has a specific
method called to bootstrap an action on the component.

The key is to implement the Autofac.IStartable interface. When the container is built, the component will be
activated and the IStartable.Start() method will be called.

This only happens once, for a single instance of each component, the first time the container is built. Resolving
startable components by hand won’t result in their Start() method being called. It isn’t recommended that startable
components are registered as anything other than SingleInstance().

Components that need to have something like a Start() method called each time they are activated should use a
lifetime event like OnActivated instead.

To create a startable component, implement Autofac.IStartable:

public class StartupMessageWriter : IStartable
{
public void Start()
{

Console.WriteLine("App is starting up!");
}

}

Then register your component and be sure to specify it as IStartable or the action won’t be called:

var builder = new ContainerBuilder();
builder

.RegisterType<StartupMessageWriter>()

.As<IStartable>()

.SingleInstance();

When the container is built, the type will be activated and the IStartable.Start() method will be called. In this
example, a message will be written to the console.

The order in which components are started is not defined, however, as of Autofac 4.7.0 when a component implementing
IStartable depends on another component that is IStartable, the Start() method is guaranteed to have been
called on the dependency before the dependent component is activated:

5.5. Additional Topics to Explore 75

Autofac Documentation, Release 7.0.0

static void Main(string[] args)
{

var builder = new ContainerBuilder();
builder.RegisterType<Startable1>().AsSelf().As<IStartable>().SingleInstance();
builder.RegisterType<Startable2>().As<IStartable>().SingleInstance();
builder.Build();

}

class Startable1 : IStartable
{

public Startable1()
{

Console.WriteLine("Startable1 activated");
}

public void Start()
{

Console.WriteLine("Startable1 started");
}

}

class Startable2 : IStartable
{

public Startable2(Startable1 startable1)
{

Console.WriteLine("Startable2 activated");
}

public void Start()
{

Console.WriteLine("Startable2 started");
}

}

Will output the following:

Startable1 activated
Startable1 started
Startable2 activated
Startable2 started

Auto-Activated Components

An auto-activated component is a component that simply needs to be activated one time when the container is built.
This is a “warm start” style of behavior where no method on the component is called and no interface needs to be
implemented - a single instance of the component will be resolved with no reference to the instance held.

To register an auto-activated component, use the AutoActivate() registration extension.

var builder = new ContainerBuilder();
builder

.RegisterType<TypeRequiringWarmStart>()
(continues on next page)

76 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

(continued from previous page)

.AsSelf()

.AutoActivate();

Note: If you omit the AsSelf() or As<T>() service registration calls when you register an AutoActivate() com-
ponent, the component will only be registered to auto-activate and won’t necessarily be resolvable “as itself” after
container build.

Build Callbacks

You can register any arbitrary action to happen at container or lifetime scope build time by registering a build callback.
A build callback is an Action<IContainer> and will get the built container prior to that container being returned
from ContainerBuilder.Build. Build callbacks execute in the order they are registered:

var builder = new ContainerBuilder();
builder

.RegisterBuildCallback(c => c.Resolve<DbContext>());

// The callback will run after the container is built
// but before it's returned.
var container = builder.Build();

You can use build callbacks as another way to automatically start/warm up an object on container build. Do that by
using them in conjunction with the lifetime event OnActivated and SingleInstance registrations.

A long/contrived example in unit test form:

public class TestClass
{
// Create a dependency chain like
// ==> 2 ==+
// 4 =+ ==> 1
// ==> 3 ==+
// 4 needs 2 and 3
// 2 needs 1
// 3 needs 1
// Dependencies should start up in the order
// 1, 2, 3, 4
// or
// 1, 3, 2, 4
private class Dependency1
{
public Dependency1(ITestOutputHelper output)
{
output.WriteLine("Dependency1.ctor");

}
}

private class Dependency2
{
private ITestOutputHelper output;

public Dependency2(ITestOutputHelper output, Dependency1 dependency)
(continues on next page)

5.5. Additional Topics to Explore 77

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
this.output = output;
output.WriteLine("Dependency2.ctor");

}

public void Initialize()
{
this.output.WriteLine("Dependency2.Initialize");

}
}

private class Dependency3
{
private ITestOutputHelper output;

public Dependency3(ITestOutputHelper output, Dependency1 dependency)
{
this.output = output;
output.WriteLine("Dependency3.ctor");

}

public void Initialize()
{
this.output.WriteLine("Dependency3.Initialize");

}
}

private class Dependency4
{
private ITestOutputHelper output;

public Dependency4(ITestOutputHelper output, Dependency2 dependency2, Dependency3␣
→˓dependency3)

{
this.output = output;
output.WriteLine("Dependency4.ctor");

}

public void Initialize()
{
this.output.WriteLine("Dependency4.Initialize");

}
}

// Xunit passes this to the ctor of the test class
// so we can capture console output.
private ITestOutputHelper _output;

public TestClass(ITestOutputHelper output)
{
this._output = output;

}

(continues on next page)

78 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

(continued from previous page)

[Fact]
public void OnActivatedDependencyChain()
{
var builder = new ContainerBuilder();
builder.RegisterInstance(this._output).As<ITestOutputHelper>();
builder.RegisterType<Dependency1>().SingleInstance();

// The OnActivated replaces the need for IStartable. When an instance
// is activated/created, it'll run the Initialize method as specified. Using
// SingleInstance means that only happens once.
builder.RegisterType<Dependency2>().SingleInstance().OnActivated(args => args.

→˓Instance.Initialize());
builder.RegisterType<Dependency3>().SingleInstance().OnActivated(args => args.

→˓Instance.Initialize());
builder.RegisterType<Dependency4>().SingleInstance().OnActivated(args => args.

→˓Instance.Initialize());

// Notice these aren't in dependency order.
builder.RegisterBuildCallback(c => c.Resolve<Dependency4>());
builder.RegisterBuildCallback(c => c.Resolve<Dependency2>());
builder.RegisterBuildCallback(c => c.Resolve<Dependency1>());
builder.RegisterBuildCallback(c => c.Resolve<Dependency3>());

// This will run the build callbacks.
var container = builder.Build();

// These effectively do NOTHING. OnActivated won't be called again
// because they're SingleInstance.
container.Resolve<Dependency1>();
container.Resolve<Dependency2>();
container.Resolve<Dependency3>();
container.Resolve<Dependency4>();

}
}

This sample unit test will generate this output:

Dependency1.ctor
Dependency2.ctor
Dependency3.ctor
Dependency4.ctor
Dependency2.Initialize
Dependency3.Initialize
Dependency4.Initialize

You’ll see from the output that the callbacks and OnActivated methods executed in dependency order. If you must
have the activations and the startups all happen in dependency order (not just the activations/resolutions), this is the
workaround.

Note if you don’t use SingleInstance then OnActivated will be called for every new instance of the dependency.
Since “warm start” objects are usually singletons and are expensive to create, this is generally what you want anyway.

5.5. Additional Topics to Explore 79

Autofac Documentation, Release 7.0.0

Lifetime Scopes

Registering an IStartable or AutoActivate item with something other than SingleInstance or
InstancePerDependency may not work the way you expect.

For example, if you register using InstancePerLifetimeScope, this does not result in a new startable running in
every lifetime scope you create. The startable will instead run on container build only.

Further, you can’t use IStartable or AutoActivate with named lifetime scopes. Registering with a named lifetime
scope won’t start the component when the named scope is created; instead it will yield an exception on container build
because the named scope doesn’t exist.

static void Main(string[] args)
{

var builder = new ContainerBuilder();

// This WON'T WORK. You'll get a DependencyResolutionException when
// the container tries to start the component because the named lifetime
// scope doesn't exist.
builder.RegisterType<Startable1>()

.As<IStartable>()

.InstancePerMatchingLifetimeScope("unitOfWork");
builder.Build();

}

If you need to start something in a particular lifetime scope, you need to register it with that lifetime scope at you create
the scope (i.e., in the BeginLifetimeScope call).

static void Main(string[] args)
{

var builder = new ContainerBuilder();
var container = builder.Build();
using(var uow = container.BeginLifetimeScope("unitOfWork", b => b.RegisterType

→˓<Startable1>().As<IStartable>()))
{
// The startable will have run.

}
}

Build callbacks will work both at the container level and scope level. They’ll run at the level in which they’re specified.

var builder = new ContainerBuilder();
builder.RegisterBuildCallback(
c => Console.WriteLine("This happens when the container is built."));

using var container = builder.Build();
using var scope = container.BeginLifetimeScope(
b => b.RegisterBuildCallback(
c => Console.WriteLine("This happens when the scope is built."));

80 Chapter 5. Controlling Scope and Lifetime

Autofac Documentation, Release 7.0.0

Tips

Where possible, try to get away from startup logic: The ability to run startup logic on container build is really
convenient, but a DI container is about wiring up your objects, not orchestrating application startup. It’s a good idea to
keep these concerns separate whenever possible.

Order: In general, startup logic happens in the order IStartable.Start(), AutoActivate, build callbacks. That
said, it is not guaranteed. For example, as noted in the IStartable docs above, things will happen in dependency
order rather than registration order. Further, Autofac reserves the right to change this order (e.g., refactor the calls to
IStartable.Start() and AutoActivate into build callbacks). If you need to control the specific order in which
initialization logic runs, it’s better to write your own initialization logic where you can control the order.

Avoid creating lifetime scopes during IStartable.Start or AutoActivate: If your startup logic includes the creation
of a lifetime scope from which components will be resolved, this scope won’t have all the startables executed yet. By
creating the scope, you’re forcing a race condition. This sort of logic would be better to execute in custom logic after
the container is built rather than as part of an IStartable.

Consider OnActivated and SingleInstance for lazy initialization: Instead of using build callbacks or startup logic,
consider using the lifetime event OnActivated with a SingleInstance registration so the initialization can happen on
an object but not be tied to the order of container build.

5.5. Additional Topics to Explore 81

Autofac Documentation, Release 7.0.0

82 Chapter 5. Controlling Scope and Lifetime

CHAPTER

SIX

CONFIGURATION

6.1 JSON/XML Configuration

Most IoC containers provide a programmatic interface as well as JSON/XML file-based configuration support, and
Autofac is no exception.

Autofac encourages programmatic configuration through the ContainerBuilder class. Using the programmatic in-
terface is central to the design of the container. JSON or XML is recommended when concrete classes cannot be chosen
or configured at compile-time.

Before diving too deeply into JSON/XML configuration, be sure to read Modules - this explains how to handle more
complex scenarios than the basic JSON/XML component registration will allow. Configuration in JSON/XML is not
a feature-for-feature replacement for programmatic configuration, so complex scenarios may require a combination of
JSON/XML and modules.

• Configuring With Microsoft Configuration (4.0+)

– Quick Start

– Default Assembly

– Components

– Modules

– Type Names

– Differences from Legacy Configuration

– Additional Tips

• Configuring With Application Configuration (Legacy Pre-4.0)

– Setup

– Components

– Modules

– Additional Config Files

– Configuring the Container

– Multiple Files or Sections

83

Autofac Documentation, Release 7.0.0

6.1.1 Configuring With Microsoft Configuration (4.0+)

Note: Microsoft Configuration applies to the 4.0+ version of Autofac.Configuration. It does not work with previous
versions of the configuration package.

With the release of Microsoft.Extensions.Configuration, and Autofac.Configuration 4.0.0, Autofac takes advantage
of the more flexible configuration model not previously available when limited to application configuration files. If
you were using the app.config or web.config based configuration available before, you will need to migrate your
configuration to the new format and update the way you set configuration with your application container.

Quick Start

The basic steps to getting configuration set up with your application are:

1. Set up your configuration in JSON or XML files that can be read by Microsoft.Extensions.Configuration.

• JSON configuration uses Microsoft.Extensions.Configuration.Json

• XML configuration uses Microsoft.Extensions.Configuration.Xml

2. Build the configuration using the Microsoft.Extensions.Configuration.ConfigurationBuilder.

3. Create a new Autofac.Configuration.ConfigurationModule and pass the built Microsoft.
Extensions.Configuration.IConfiguration into it.

4. Register the Autofac.Configuration.ConfigurationModule with your container.

A configuration file with some simple registrations looks like this:

{
"defaultAssembly": "Autofac.Example.Calculator",
"components": [{
"type": "Autofac.Example.Calculator.Addition.Add, Autofac.Example.Calculator.Addition

→˓",
"services": [{
"type": "Autofac.Example.Calculator.Api.IOperation"

}],
"injectProperties": true

}, {
"type": "Autofac.Example.Calculator.Division.Divide, Autofac.Example.Calculator.

→˓Division",
"services": [{
"type": "Autofac.Example.Calculator.Api.IOperation"

}],
"parameters": {
"places": 4

}
}]

}

JSON is cleaner and easier to read, but if you prefer XML, the same configuration looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<autofac defaultAssembly="Autofac.Example.Calculator">

<components name="0">
(continues on next page)

84 Chapter 6. Configuration

https://www.nuget.org/packages/Microsoft.Extensions.Configuration

Autofac Documentation, Release 7.0.0

(continued from previous page)

<type>Autofac.Example.Calculator.Addition.Add, Autofac.Example.Calculator.
→˓Addition</type>

<services name="0" type="Autofac.Example.Calculator.Api.IOperation" />
<injectProperties>true</injectProperties>

</components>
<components name="1">

<type>Autofac.Example.Calculator.Division.Divide, Autofac.Example.Calculator.
→˓Division</type>

<services name="0" type="Autofac.Example.Calculator.Api.IOperation" />
<injectProperties>true</injectProperties>
<parameters>

<places>4</places>
</parameters>

</components>
</autofac>

Note the ordinal “naming” of components and services in XML - this is due to the way Mi-
crosoft.Extensions.Configuration handles ordinal collections (arrays).

Build up your configuration and register it with the Autofac ContainerBuilder like this:

// Add the configuration to the ConfigurationBuilder.
var config = new ConfigurationBuilder();
// config.AddJsonFile comes from Microsoft.Extensions.Configuration.Json
// config.AddXmlFile comes from Microsoft.Extensions.Configuration.Xml
config.AddJsonFile("autofac.json");

// Register the ConfigurationModule with Autofac.
var module = new ConfigurationModule(config.Build());
var builder = new ContainerBuilder();
builder.RegisterModule(module);

Default Assembly

You can specify a “default assembly” option in the configuration to help write types in a shorter fashion. If you don’t
specify an assembly-qualified type name in a type or interface reference, it will be assumed to be in the default assembly.

{
"defaultAssembly": "Autofac.Example.Calculator"

}

Components

Components are the most common thing that you’ll register. You can specify several things on each component from
lifetime scope to parameters.

Components are added to a top-level components element in configuration. Inside that is an array of the components
you want to register.

This example shows one component that has all of the options on it, just for syntax illustration purposes. You wouldn’t
actually use every one of these in every component registration.

6.1. JSON/XML Configuration 85

Autofac Documentation, Release 7.0.0

{
"components": [{
"type": "Autofac.Example.Calculator.Addition.Add, Autofac.Example.Calculator.Addition

→˓",
"services": [{
"type": "Autofac.Example.Calculator.Api.IOperation"

}, {
"type": "Autofac.Example.Calculator.Api.IAddOperation",
"key": "add"

}],
"autoActivate": true,
"injectProperties": true,
"instanceScope": "per-dependency",
"metadata": [{
"key": "answer",
"value": 42,
"type": "System.Int32, mscorlib"

}],
"ownership": "external",
"parameters": {
"places": 4

},
"properties": {
"DictionaryProp": {
"key": "value"

},
"ListProp": [1, 2, 3, 4, 5]

}
}]

}

Element
Name

Description Valid Values

type The only required thing. The concrete class of the component
(assembly-qualified if in an assembly other than the default).

Any .NET type name that can be
created through reflection.

services An array of services exposed by the component. Each service
must have a type and may optionally specify a key.

Any .NET type name that can be
created through reflection.

autoActivateA Boolean indicating if the component should auto-activate. true, false
injectPropertiesA Boolean indicating whether property (setter) injection for the

component should be enabled.
true, false

instanceScopeInstance scope for the component. singleinstance,
perlifetimescope,
perdependency, perrequest

metadata An array of metadata values to associate with the component.
Each item specifies the name, type, and value.

Any metadata values.

ownership Allows you to control whether the lifetime scope disposes the
component or your code does.

lifetimescope, external

parametersA name/value dictionary where the name of each element is the
name of a constructor parameter and the value is the value to
inject.

Any parameter in the constructor of
the component type.

propertiesA name/value dictionary where the name of each element is the
name of a property and the value is the value to inject.

Any settable property on the com-
ponent type.

86 Chapter 6. Configuration

Autofac Documentation, Release 7.0.0

Note that both parameters and properties support dictionary and enumerable values. You can see an example of
how to specify those in the JSON structure, above.

Modules

When using modules with Autofac, you can register those modules along with components when using configuration.

Modules are added to a top-level modules element in configuration. Inside that is an array of the modules you want to
register.

This example shows one module that has all of the options on it, just for syntax illustration purposes. You wouldn’t
actually use every one of these in every module registration.

{
"modules": [{
"type": "Autofac.Example.Calculator.OperationModule, Autofac.Example.Calculator",
"parameters": {
"places": 4

},
"properties": {
"DictionaryProp": {
"key": "value"

},
"ListProp": [1, 2, 3, 4, 5]

}
}]

}

Ele-
ment
Name

Description Valid Values

type The only required thing. The concrete class of the mod-
ule (assembly-qualified if in an assembly other than the de-
fault).

Any .NET type name that derives from
Autofac.Module that can be created
through reflection.

parametersA name/value dictionary where the name of each element
is the name of a constructor parameter and the value is the
value to inject.

Any parameter in the constructor of the
module type.

propertiesA name/value dictionary where the name of each element
is the name of a property and the value is the value to inject.

Any settable property on the module type.

Note that both parameters and properties support dictionary and enumerable values. You can see an example of
how to specify those in the JSON structure, above.

You are allowed to register the same module multiple times using different parameter/property sets if you so choose.

6.1. JSON/XML Configuration 87

Autofac Documentation, Release 7.0.0

Type Names

In all cases where you see a type name (component type, service types, module type) it is expected to be the standard,
assembly qualified type name that you would normally be able to pass to Type.GetType(string typename). If the
type is in the defaultAssembly you can leave the assembly name off, but it doesn’t hurt to put it there regardless.

Assembly qualified type names have the full type with namespace, a comma, and the name of the assembly, like
Autofac.Example.Calculator.OperationModule, Autofac.Example.Calculator. In that case, Autofac.
Example.Calculator.OperationModule is the type and it’s in the Autofac.Example.Calculator assembly.

Generics are a little more complicated. Configuration does not support open generics so you have to specify the fully
qualified name of each of the generic parameters, too.

For example, say you have a repository IRepository<T> in a ConfigWithGenericsDemo assembly. Let’s also say
you have a class StringRepository that implements IRepository<string>. To register that in configuration, it
would look like this:

{
"components": [{
"type": "ConfigWithGenericsDemo.StringRepository, ConfigWithGenericsDemo",
"services": [{
"type": "ConfigWithGenericsDemo.IRepository`1[[System.String, mscorlib]],␣

→˓ConfigWithGenericsDemo"
}]

}]
}

If you’re having a difficult time figuring out what your type name is, you can always do something like this in code:

// Write the type name to the Debug output window and
// copy/paste it out of there into your config.
System.Diagnostics.Debug.WriteLine(typeof(IRepository<string>).AssemblyQualifiedName);

Differences from Legacy Configuration

When migrating from the legacy (pre 4.0 version) app.config based format to the new format, there are some key
changes to be aware of:

• There is no ConfigurationSettingsReader. Microsoft.Extensions.Configuration has entirely replaced
the old XML format configuration. The legacy configuration documentation does not apply to the 4.0+ series of
configuration package.

• Multiple configuration files handled differently. The legacy configuration had a files element that
would automatically pull several files together at once for configuration. Use the Microsoft.Extensions.
Configuration.ConfigurationBuilder to accomplish this now.

• AutoActivate is supported. You can specify components should auto-activate now, a feature previously un-
available in configuration.

• XML uses element children rather than attributes. This helps keep the XML and JSON parsing the same
when using Microsoft.Extensions.Configuration so you can combine XML and JSON configuration
sources correctly.

• Using XML requires you to name components and services with numbers. Microsoft.Extensions.
Configuration requires every configuration item to have a name and a value. The way it supports ordinal
collections (arrays) is that it implicitly gives unnamed elements in a collection names with numbers (“0”, “1”,

88 Chapter 6. Configuration

https://msdn.microsoft.com/en-us/library/yfsftwz6(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/yfsftwz6(v=vs.110).aspx

Autofac Documentation, Release 7.0.0

and so on). You can see an example of this in the quick start, above. If you don’t go with JSON, you need to
watch for this requirement from Microsoft.Extensions.Configuration or you won’t get what you expect.

• Per-request lifetime scope is supported. Previously you couldn’t configure elements to have per-request lifetime
scope. Now you can.

• Dashes in names/values are gone. Names of XML elements used to include dashes like inject-properties
- to work with the JSON configuration format, these are now camel-case, like injectProperties.

• Services get specified in a child element. The legacy configuration allowed a service to be declared right at the
top of the component. The new system requires all services be in the services collection.

Additional Tips

The new Microsoft.Extensions.Configurationmechanism adds a lot of flexibility. Things you may want to take
advantage of:

• Environment variable support. You can use Microsoft.Extensions.Configuration.
EnvironmentVariables to enable configuration changes based on the environment. A quick way to
debug, patch, or fix something without touching code might be to switch an Autofac registration based on
environment.

• Easy configuration merging. The ConfigurationBuilder allows you to create configuration from a lot of
sources and merge them into one. If you have a lot of configuration, consider scanning for your configuration
files and building the configuration dynamically rather than hard-coding paths.

• Custom configuration sources. You can implement Microsoft.Extensions.Configuration.
ConfigurationProvider yourself backed by more than just files. If you want to centralize configuration,
consider a database or REST API backed configuration source.

6.1.2 Configuring With Application Configuration (Legacy Pre-4.0)

Note: Legacy application configuration as described below applies to the 3.x and earlier versions of Auto-
fac.Configuration. It does not work with the 4.0+ version of the package.

Prior to the release of Microsoft.Extensions.Configuration and the updated configuration model, Autofac tied into stan-
dard .NET application configuration files. (app.config / web.config). In the 3.x series of the Autofac.Configuration
package, this was the way to configure things.

Setup

Using the legacy configuration mechanism, you need to declare a section handler somewhere near the top of your config
file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="autofac" type="Autofac.Configuration.SectionHandler, Autofac.

→˓Configuration"/>
</configSections>

Then, provide a section describing your components:

6.1. JSON/XML Configuration 89

https://www.nuget.org/packages/Microsoft.Extensions.Configuration

Autofac Documentation, Release 7.0.0

<autofac defaultAssembly="Autofac.Example.Calculator.Api">
<components>

<component
type="Autofac.Example.Calculator.Addition.Add, Autofac.Example.Calculator.

→˓Addition"
service="Autofac.Example.Calculator.Api.IOperation" />

<component
type="Autofac.Example.Calculator.Division.Divide, Autofac.Example.Calculator.

→˓Division"
service="Autofac.Example.Calculator.Api.IOperation" >
<parameters>

<parameter name="places" value="4" />
</parameters>

</component>

The defaultAssembly attribute is optional, allowing namespace-qualified rather than fully-qualified type names to be
used. This can save some clutter and typing, especially if you use one configuration file per assembly (see Additional
Config Files below.)

Components

Components are the most common thing that you’ll register. You can specify several things on each component from
lifetime scope to parameters.

Component Attributes

The following can be used as attributes on the component element (defaults are the same as for the programmatic API):

Attribute
Name

Description Valid Values

type The only required attribute. The concrete class of the compo-
nent (assembly-qualified if in an assembly other than the de-
fault.)

Any .NET type name that can be
created through reflection.

service A service exposed by the component. For more than one ser-
vice, use the nested services element.

As for type.

instance-scopeInstance scope - see Instance Scope. per-dependency,
single-instance or
per-lifetime-scope

instance-ownershipContainer’s ownership over the instances - see the
InstanceOwnership enumeration.

lifetime-scope or external

name A string name for the component. Any non-empty string value.
inject-propertiesEnable property (setter) injection for the component. yes, no.

90 Chapter 6. Configuration

Autofac Documentation, Release 7.0.0

Component Child Elements

Ele-
ment

Description

services A list of service elements, whose element content contains the names of types exposed as services
by the component (see the service attribute.)

parametersA list of explicit constructor parameters to set on the instances (see example above.)
propertiesA list of explicit property values to set (syntax as for parameters.)
metadata A list of item nodes with name, value and type attributes.

There are some features missing from the XML configuration syntax that are available through the programmatic API
- for example registration of generics. Using modules is recommended in these cases.

Modules

Configuring the container using components is very fine-grained and can get verbose quickly. Autofac has support for
packaging components into Modules in order to encapsulate implementation while providing flexible configuration.

Modules are registered by type:

<modules>
<module type="MyModule" />

You can add nested parameters and properties to a module registration in the same manner as for components
above.

Additional Config Files

You can include additional config files using:

<files>
<file name="Controllers.config" section="controllers" />

Configuring the Container

First, you must reference Autofac.Configuration.dll in from your project.

To configure the container use a ConfigurationSettingsReader initialized with the name you gave to your XML
configuration section:

var builder = new ContainerBuilder();
builder.RegisterModule(new ConfigurationSettingsReader("mycomponents"));
// Register other components and call Build() to create the container.

The container settings reader will override default components already registered; you can write your application so
that it will run with sensible defaults and then override only those component registrations necessary for a particular
deployment.

6.1. JSON/XML Configuration 91

Autofac Documentation, Release 7.0.0

Multiple Files or Sections

You can use multiple settings readers in the same container, to read different sections or even different config files if
the filename is supplied to the ConfigurationSettingsReader constructor.

6.2 Modules

6.2.1 Introduction

IoC uses components as the basic building blocks of an application. Providing access to the constructor parameters
and properties of components is very commonly used as a means to achieve deployment-time configuration.

This is generally a dubious practice for the following reasons:

• Constructors can change: Changes to the constructor signature or properties of a component can break deployed
App.config files - these problems can appear very late in the development process.

• JSON/XML gets hard to maintain: Configuration files for large numbers of components can become unwieldy
to maintain.

• “Code” starts showing up in configuration: Exposing the properties and constructor parameters of classes is an
unpleasant breach of the ‘encapsulation’ of the application’s internals - these details don’t belong in configuration
files.

This is where modules can help.

A module is a small class that can be used to bundle up a set of related components behind a ‘facade’ to simplify
configuration and deployment. The module exposes a deliberate, restricted set of configuration parameters that can
vary independently of the components used to implement the module.

The components within a module still make use dependencies at the component/service level to access components
from other modules.

Modules do not, themselves, go through dependency injection. They are used to configure the container, they are
not actually registered and resolved like other components. If your module takes a constructor parameter, for example,
you need to pass that in yourself. It won’t come from the container.

6.2.2 Advantages of Modules

Decreased Configuration Complexity

When configuring an application by IoC it is often necessary to set the parameters spread between multiple components.
Modules group related configuration items into one place to reduce the burden of looking up the correct component
for a setting.

The implementer of a module determines how the module’s configuration parameters map to the properties and con-
structor parameters of the components inside.

92 Chapter 6. Configuration

Autofac Documentation, Release 7.0.0

Configuration Parameters are Explicit

Configuring an application directly through its components creates a large surface area that will need to be considered
when upgrading the application. When it is possible to set potentially any property of any class through a configuration
file that will differ at every site, refactoring is no longer safe.

Creating modules limits the configuration parameters that a user can configure, and makes it explicit to the maintenance
programmer which parameters these are.

You can also avoid a trade-off between what makes a good program element and what makes a good configuration
parameter.

Abstraction from the Internal Application Architecture

Configuring an application through its components means that the configuration needs to differ depending on things like,
for example, the use of an enum vs. creation of strategy classes. Using modules hides these details of the application’s
structure, keeping configuration succinct.

Better Type Safety

A small reduction in type safety will always exist when the classes making up the application can vary based on
deployment. Registering large numbers of components through XML configuration, however, exacerbates this problem.

Modules are constructed programmatically, so all of the component registration logic within them can be checked at
compile time.

Dynamic Configuration

Configuring components within modules is dynamic: the behavior of a module can vary based on the runtime environ-
ment. This is hard, if not impossible, with purely component-based configuration.

Advanced Extensions

Modules can be used for more than just simple type registrations - you can also attach to component resolution events
and extend how parameters are resolved or perform other extensions. The log4net integration module example shows
one such module.

6.2.3 Example

In Autofac, modules implement the Autofac.Core.IModule interface. Generally they will derive from the Autofac.
Module abstract class.

This module provides the IVehicle service:

public class CarTransportModule : Module
{
public bool ObeySpeedLimit { get; set; }

protected override void Load(ContainerBuilder builder)
{
builder.Register(c => new Car(c.Resolve<IDriver>())).As<IVehicle>();

(continues on next page)

6.2. Modules 93

Autofac Documentation, Release 7.0.0

(continued from previous page)

if (ObeySpeedLimit)
builder.Register(c => new SaneDriver()).As<IDriver>();

else
builder.Register(c => new CrazyDriver()).As<IDriver>();

}
}

Encapsulated Configuration

Our CarTransportModule provides the ObeySpeedLimit configuration parameter without exposing the fact that this
is implemented by choosing between a sane or a crazy driver. Clients using the module can use it by declaring their
intentions:

builder.RegisterModule(new CarTransportModule() {
ObeySpeedLimit = true

});

or in Microsoft.Extensions.Configuration configuration format:

{
"modules": [{
"type": "MyNamespace.CarTransportModule, MyAssembly",
"properties": {
"ObeySpeedLimit": true

}
}]

}

This is valuable because the implementation of the module can vary without a flow on effect. That’s the idea of
encapsulation, after all.

Flexibility to Override

Although clients of the CarTransportModule are probably primarily concerned with the IVehicle service, the mod-
ule registers its IDriver dependency with the container as well. This ensures that the configuration is still able to be
overridden at deployment time in the same way as if the components that make up the module had been registered
independently.

It is a ‘best practice’ when using Autofac to add any XML configuration after programmatic configuration, e.g.:

builder.RegisterModule(new CarTransportModule());
builder.RegisterModule(new ConfigurationSettingsReader());

In this way, ‘emergency’ overrides can be made in a configuration file:

{
"components": [{
"type": "MyNamespace.LearnerDriver, MyAssembly",
"services": [{
"type": "MyNamespace.IDriver, MyAssembly"

}]
(continues on next page)

94 Chapter 6. Configuration

Autofac Documentation, Release 7.0.0

(continued from previous page)

}]
}

So, modules increase encapsulation but don’t preclude you from tinkering with their innards if you have to.

6.2.4 Adapting to the Deployment Environment

Modules can be dynamic - that is, they can configure themselves to their execution environment.

When a module is loaded, it can do nifty things like check the environment:

protected override void Load(ContainerBuilder builder)
{
if (Environment.OSVersion.Platform == PlatformID.Unix)

RegisterUnixPathFormatter(builder);
else
RegisterWindowsPathFormatter(builder);

}

6.2.5 Common Use Cases for Modules

• Configure related services that provide a subsystem, e.g. data access with NHibernate

• Package optional application features as ‘plug-ins’

• Provide pre-built packages for integration with a system, e.g. an accounting system

• Register a number of similar services that are often used together, e.g. a set of file format converters

• New or customized mechanisms for configuring the container, e.g. JSON/XML configuration is implemented
using a module; configuration using attributes could be added this way

6.2. Modules 95

Autofac Documentation, Release 7.0.0

96 Chapter 6. Configuration

CHAPTER

SEVEN

APPLICATION INTEGRATION

7.1 ASP.NET

Autofac offers integration into several ASP.NET application types. The integration libraries provide features like easy
connection of your Autofac container to the application lifecycle as well as support for things like per-request component
lifetime.

These pages explain ASP.NET classic integration. If you are using ASP.NET Core, see the ASP.NET Core integration
page.

7.1.1 OWIN

OWIN (Open Web Interface for .NET) is a simpler model for composing web-based applications without tying the
application to the web server. To do this, a concept of “middleware” is used to create a pipeline through which requests
travel.

Due to the differences in the way OWIN handles the application pipeline (detecting when a request starts/ends, etc.)
integrating Autofac into an OWIN application is slightly different than the way it gets integrated into more “standard”
ASP.NET apps. You can read about OWIN and how it works on this overview.

The important thing to remember is that order of OWIN middleware registration matters. Middleware gets
processed in order of registration, like a chain, so you need to register foundational things (like Autofac middleware)
first.

Quick Start

To take advantage of Autofac in your OWIN pipeline:

• Reference the Autofac.Owin package from NuGet.

• Build your Autofac container.

• Register the Autofac middleware with OWIN and pass it the container.

public class Startup
{
public void Configuration(IAppBuilder app)
{
var builder = new ContainerBuilder();
// Register dependencies, then...
var container = builder.Build();

(continues on next page)

97

http://owin.org/
http://www.asp.net/aspnet/overview/owin-and-katana/an-overview-of-project-katana

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Register the Autofac middleware FIRST. This also adds
// Autofac-injected middleware registered with the container.
app.UseAutofacMiddleware(container);

// ...then register your other middleware not registered
// with Autofac.

}
}

Check out the individual ASP.NET integration library pages for specific details on different app types and how they
handle OWIN support.

Dependency Injection in Middleware

Normally when you register OWIN middleware with your application, you use the extension methods that come with
the middleware. For example Web API has the app.UseWebApi(config); extension. Middleware registered in this
fashion is statically defined and will not have dependencies injected.

For custom middleware, you can allow Autofac to inject dependencies into the middleware by registering it with your
application container rather than registering it with a static extension.

var builder = new ContainerBuilder();
builder.RegisterType<MyCustomMiddleware>();
//...
var container = builder.Build();

// This will add the Autofac middleware as well as the middleware
// registered in the container.
app.UseAutofacMiddleware(container);

When you call app.UseAutofacMiddleware(container); the Autofac middleware itself will be added to the
pipeline, after which any Microsoft.Owin.OwinMiddleware classes registered with the container will also be added
to the pipeline.

Middleware registered in this way will be resolved from the request lifetime scope for each request passing through the
OWIN pipeline.

Controlling Middleware Order

For a simple scenario, app.UseAutofacMiddleware(container); will handle both adding an Autofac lifetime to
the OWIN request scope as well as adding middleware that is registered with Autofac into the pipeline.

If you want more control over when DI-enabled middleware is added to the pipeline, you can use the
UseAutofacLifetimeScopeInjector and UseMiddlewareFromContainer extensions.

var builder = new ContainerBuilder();
builder.RegisterType<MyCustomMiddleware>();
//...
var container = builder.Build();

// This adds ONLY the Autofac lifetime scope to the pipeline.
app.UseAutofacLifetimeScopeInjector(container);

(continues on next page)

98 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Now you can add middleware from the container into the pipeline
// wherever you like. For example, this adds custom DI-enabled middleware
// AFTER the Web API middleware/handling.
app.UseWebApi(config);
app.UseMiddlewareFromContainer<MyCustomMiddleware>();

Example

There is an example project showing Web API in conjunction with OWIN self hosting in the Autofac examples repos-
itory.

7.1.2 MVC

Autofac is always kept up to date to support the latest version of ASP.NET MVC, so documentation is also kept up with
the latest. Generally speaking, the integration remains fairly consistent across versions.

MVC integration requires the Autofac.Mvc5 NuGet package.

MVC integration provides dependency injection integration for controllers, model binders, action filters, and views. It
also adds per-request lifetime support.

This page explains ASP.NET classic MVC integration. If you are using ASP.NET Core, see the ASP.NET Core
integration page.

• Quick Start

• Register Controllers

• Set the Dependency Resolver

• Register Model Binders

• Register Web Abstractions

• Enable Property Injection for View Pages

• Enable Property Injection for Action Filters

• Enable Injection of Action Parameters

• OWIN Integration

• Using “Plugin” Assemblies

• Using the Current Autofac DependencyResolver

• Glimpse Integration

• Unit Testing

• Example

7.1. ASP.NET 99

https://github.com/autofac/Examples/tree/master/src/WebApiExample.OwinSelfHost
https://github.com/autofac/Examples/tree/master/src/WebApiExample.OwinSelfHost
https://www.nuget.org/packages/Autofac.Mvc5/

Autofac Documentation, Release 7.0.0

Quick Start

To get Autofac integrated with MVC you need to reference the MVC integration NuGet package, register your con-
trollers, and set the dependency resolver. You can optionally enable other features as well.

protected void Application_Start()
{
var builder = new ContainerBuilder();

// Register your MVC controllers. (MvcApplication is the name of
// the class in Global.asax.)
builder.RegisterControllers(typeof(MvcApplication).Assembly);

// OPTIONAL: Register model binders that require DI.
builder.RegisterModelBinders(typeof(MvcApplication).Assembly);
builder.RegisterModelBinderProvider();

// OPTIONAL: Register web abstractions like HttpContextBase.
builder.RegisterModule<AutofacWebTypesModule>();

// OPTIONAL: Enable property injection in view pages.
builder.RegisterSource(new ViewRegistrationSource());

// OPTIONAL: Enable property injection into action filters.
builder.RegisterFilterProvider();

// OPTIONAL: Enable action method parameter injection (RARE).
builder.InjectActionInvoker();

// Set the dependency resolver to be Autofac.
var container = builder.Build();
DependencyResolver.SetResolver(new AutofacDependencyResolver(container));

}

The sections below go into further detail about what each of these features do and how to use them.

Register Controllers

At application startup, while building your Autofac container, you should register your MVC controllers and their
dependencies. This typically happens in an OWIN startup class or in the Application_Start method in Global.
asax.

var builder = new ContainerBuilder();

// You can register controllers all at once using assembly scanning...
builder.RegisterControllers(typeof(MvcApplication).Assembly);

// ...or you can register individual controllers manually.
builder.RegisterType<HomeController>().InstancePerRequest();

Note that ASP.NET MVC requests controllers by their concrete types, so registering them As<IController>()
is incorrect. Also, if you register controllers manually and choose to specify lifetimes, you must register them as
InstancePerDependency() or InstancePerRequest() - ASP.NET MVC will throw an exception if you try to
reuse a controller instance for multiple requests.

100 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

Set the Dependency Resolver

After building your container pass it into a new instance of the AutofacDependencyResolver class. Use the static
DependencyResolver.SetResolver method to let ASP.NET MVC know that it should locate services using the
AutofacDependencyResolver. This is Autofac’s implementation of the IDependencyResolver interface.

var container = builder.Build();
DependencyResolver.SetResolver(new AutofacDependencyResolver(container));

Register Model Binders

An optional step you can take is to enable dependency injection for model binders. Similar to controllers, model binders
(classes that implement IModelBinder) can be registered in the container at application startup. You can do this with
the RegisterModelBinders() method. You must also remember to register the AutofacModelBinderProvider
using the RegisterModelBinderProvider() extension method. This is Autofac’s implementation of the
IModelBinderProvider interface.

builder.RegisterModelBinders(Assembly.GetExecutingAssembly());
builder.RegisterModelBinderProvider();

Because the RegisterModelBinders() extension method uses assembly scanning to add the model binders you need
to specify what type(s) the model binders (IModelBinder implementations) are to be registered for.

This is done by using the Autofac.Integration.Mvc.ModelBinderTypeAttribute, like so:

[ModelBinderType(typeof(string))]
public class StringBinder : IModelBinder
{
public override object BindModel(ControllerContext controllerContext,␣

→˓ModelBindingContext bindingContext)
{
// Implementation here

}
}

Multiple instances of the ModelBinderTypeAttribute can be added to a class if it is to be registered for multiple
types.

Register Web Abstractions

The MVC integration includes an Autofac module that will add HTTP request lifetime scoped registrations for the web
abstraction classes. This will allow you to put the web abstraction as a dependency in your class and get the correct
value injected at runtime.

The following abstract classes are included:

• HttpContextBase

• HttpRequestBase

• HttpResponseBase

• HttpServerUtilityBase

• HttpSessionStateBase

• HttpApplicationStateBase

7.1. ASP.NET 101

Autofac Documentation, Release 7.0.0

• HttpBrowserCapabilitiesBase

• HttpFileCollectionBase

• RequestContext

• HttpCachePolicyBase

• VirtualPathProvider

• UrlHelper

To use these abstractions add the AutofacWebTypesModule to the container using the standard RegisterModule()
method.

builder.RegisterModule<AutofacWebTypesModule>();

Enable Property Injection for View Pages

You can make property injection available to your MVC views by adding the ViewRegistrationSource to your
ContainerBuilder before building the application container.

builder.RegisterSource(new ViewRegistrationSource());

Your view page must inherit from one of the base classes that MVC supports for creating views. When using the Razor
view engine this will be the WebViewPage class.

public abstract class CustomViewPage : WebViewPage
{
public IDependency Dependency { get; set; }

}

The ViewPage, ViewMasterPage and ViewUserControl classes are supported when using the web forms view
engine.

public abstract class CustomViewPage : ViewPage
{
public IDependency Dependency { get; set; }

}

Ensure that your actual view page inherits from your custom base class. This can be achieved using the @inherits
directive inside your .cshtml file for the Razor view engine:

@inherits Example.Views.Shared.CustomViewPage

When using the web forms view engine you set the Inherits attribute on the @ Page directive inside your .aspx file
instead.

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="Example.
→˓Views.Shared.CustomViewPage"%>

Due to an issue with ASP.NET MVC internals, dependency injection is not available for Razor layout pages.
Razor views will work, but layout pages won’t. See issue #349 for more information.

102 Chapter 7. Application Integration

https://github.com/autofac/Autofac/issues/349#issuecomment-33025529

Autofac Documentation, Release 7.0.0

Enable Property Injection for Action Filters

To make use of property injection for your filter attributes call the RegisterFilterProvider() method on the
ContainerBuilder before building your container and providing it to the AutofacDependencyResolver.

builder.RegisterFilterProvider();

This allows you to add properties to your filter attributes and any matching dependencies that are registered in the
container will be injected into the properties.

For example, the action filter below will have the ILogger instance injected from the container (assuming you register
an ILogger. Note that the attribute itself does not need to be registered in the container.

public class CustomActionFilter : ActionFilterAttribute
{
public ILogger Logger { get; set; }

public override void OnActionExecuting(ActionExecutingContext filterContext)
{
Logger.Log("OnActionExecuting");

}
}

The same simple approach applies to the other filter attribute types such as authorization attributes.

public class CustomAuthorizeAttribute : AuthorizeAttribute
{
public ILogger Logger { get; set; }

protected override bool AuthorizeCore(HttpContextBase httpContext)
{
Logger.Log("AuthorizeCore");
return true;

}
}

After applying the attributes to your actions as usual your work is done.

[CustomActionFilter]
[CustomAuthorizeAttribute]
public ActionResult Index()
{
}

Enable Injection of Action Parameters

While not common, some folks want to have Autofac populate parameters in action methods when they’re called. It is
recommended you use constructor injection on your controller rather than action method injection but you can
enable action method injection if you desire:

// The Autofac ExtensibleActionInvoker attempts to resolve parameters
// from the request lifetime scope IF the model binder can't bind
// to the parameter.

(continues on next page)

7.1. ASP.NET 103

Autofac Documentation, Release 7.0.0

(continued from previous page)

builder.RegisterType<ExtensibleActionInvoker>().As<IActionInvoker>();
builder.InjectActionInvoker();

Note you can use the InjectActionInvoker() mechanism with your own custom invoker, too.

builder.RegisterType<MyCustomActionInvoker>().As<IActionInvoker>();
builder.InjectActionInvoker();

OWIN Integration

If you are using MVC as part of an OWIN application, you need to:

• Do all the stuff for standard MVC integration - register controllers, set the dependency resolver, etc.

• Set up your app with the base Autofac OWIN integration.

• Add a reference to the Autofac.Mvc5.Owin NuGet package.

• In your application startup class, register the Autofac MVC middleware after registering the base Autofac mid-
dleware.

public class Startup
{
public void Configuration(IAppBuilder app)
{
var builder = new ContainerBuilder();

// STANDARD MVC SETUP:

// Register your MVC controllers.
builder.RegisterControllers(typeof(MvcApplication).Assembly);

// Run other optional steps, like registering model binders,
// web abstractions, etc., then set the dependency resolver
// to be Autofac.
var container = builder.Build();
DependencyResolver.SetResolver(new AutofacDependencyResolver(container));

// OWIN MVC SETUP:

// Register the Autofac middleware FIRST, then the Autofac MVC middleware.
app.UseAutofacMiddleware(container);
app.UseAutofacMvc();

}
}

Minor gotcha: MVC doesn’t run 100% in the OWIN pipeline. It still needs HttpContext.Current and some
other non-OWIN things. At application startup, when MVC registers routes, it instantiates an IControllerFactory
that ends up creating two request lifetime scopes. It only happens during app startup at route registration time, not once
requests start getting handled, but it’s something to be aware of. This is an artifact of the two pipelines being mangled
together. We looked into ways to try working around it but were unable to do so in a clean fashion.

104 Chapter 7. Application Integration

https://www.nuget.org/packages/Autofac.Mvc5.Owin/
https://github.com/autofac/Autofac.Mvc/issues/5

Autofac Documentation, Release 7.0.0

Using “Plugin” Assemblies

If you have controllers in a “plugin assembly” that isn’t referenced by the main application you’ll need to register your
controller plugin assembly with the ASP.NET BuildManager.

You can do this through configuration or programmatically.

If you choose configuration, you need to add your plugin assembly to the /configuration/system.web/
compilation/assemblies list. If your plugin assembly isn’t in the bin folder, you also need to update the /
configuration/runtime/assemblyBinding/probing path.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<!--

If you put your plugin in a folder that isn't bin, add it to the probing path
-->
<probing privatePath="bin;bin\plugins" />

</assemblyBinding>
</runtime>
<system.web>
<compilation>
<assemblies>
<add assembly="The.Name.Of.Your.Plugin.Assembly.Here" />

</assemblies>
</compilation>

</system.web>
</configuration>

If you choose programmatic registration, you need to do it during pre-application-start before the ASP.NET
BuildManager kicks in.

Create an initializer class to do the assembly scanning/loading and registration with the BuildManager:

using System.IO;
using System.Reflection;
using System.Web.Compilation;

namespace MyNamespace
{
public static class Initializer
{
public static void Initialize()
{
var pluginFolder = new DirectoryInfo(HostingEnvironment.MapPath("~/plugins"));
var pluginAssemblies = pluginFolder.GetFiles("*.dll", SearchOption.AllDirectories);
foreach (var pluginAssemblyFile in pluginAssemblyFiles)
{
var asm = Assembly.LoadFrom(pluginAssemblyFile.FullName);
BuildManager.AddReferencedAssembly(asm);

}
}

}
}

7.1. ASP.NET 105

http://www.paraesthesia.com/archive/2013/01/21/putting-controllers-in-plugin-assemblies-for-asp-net-mvc.aspx
http://www.paraesthesia.com/archive/2013/01/21/putting-controllers-in-plugin-assemblies-for-asp-net-mvc.aspx

Autofac Documentation, Release 7.0.0

Then be sure to register your pre-application-start code with an assembly attribute:

[assembly: PreApplicationStartMethod(typeof(Initializer), "Initialize")]

Using the Current Autofac DependencyResolver

Once you set the MVC DependencyResolver to an AutofacDependencyResolver, you can use
AutofacDependencyResolver.Current as a shortcut to getting the current dependency resolver and casting
it to an AutofacDependencyResolver.

Unfortunately, there are some gotchas around the use of AutofacDependencyResolver.Current that can result in
things not working quite right. Usually these issues arise by using a product like Glimpse or Castle DynamicProxy that
“wrap” or “decorate” the dependency resolver to add functionality. If the current dependency resolver is decorated or
otherwise wrapped/proxied, you can’t cast it to AutofacDependencyResolver and there’s no single way to “unwrap
it” or get to the actual resolver.

Prior to version 3.3.3 of the Autofac MVC integration, we tracked the current dependency resolver by dy-
namically adding it to the request lifetime scope. This got us around issues where we couldn’t unwrap the
AutofacDependencyResolver from a proxy. . . but it meant that AutofacDependencyResolver.Current would
only work during a request lifetime - you couldn’t use it in background tasks or at application startup.

Starting with version 3.3.3, the logic for locating AutofacDependencyResolver.Current changed to first attempt
to cast the current dependency resolver; then to specifically look for signs it was wrapped using Castle DynamicProxy
and unwrap it via reflection. Failing that. . . we can’t find the current AutofacDependencyResolver so we throw an
InvalidOperationException with a message like:

The dependency resolver is of type ‘Some.Other.DependencyResolver’ but was expected to be of type
‘Autofac.Integration.Mvc.AutofacDependencyResolver’. It also does not appear to be wrapped using Dy-
namicProxy from the Castle Project. This issue could be the result of a change in the DynamicProxy
implementation or the use of a different proxy library to wrap the dependency resolver.

The typical place where this is seen is when using the action filter provider via ContainerBuilder.
RegisterFilterProvider(). The filter provider needs to access the Autofac dependency resolver and uses
AutofacDependencyResolver.Current to do it.

If you see this, it means you’re decorating the resolver in a way that can’t be unwrapped and functions that rely on
AutofacDependencyResolver.Current will fail. The current solution is to not decorate the dependency resolver.

Glimpse Integration

Integration of an MVC application with Glimpse when using Autofac is pretty much the same as with any other inte-
gration. However, if you use action method parameter injection (e.g., with builder.InjectActionInvoker())
then Glimpse execution inspection will fail.

You can work around this by adding the following to your Glimpse configuration:

<glimpse defaultRuntimePolicy="On" endpointBaseUri="~/Glimpse.axd">
<inspectors>
<ignoredTypes>
<add type="Glimpse.Mvc.Inspector.ExecutionInspector, Glimpse.Mvc"/>

</ignoredTypes>
</inspectors>
<tabs>
<ignoredTypes>
<add type="Glimpse.Mvc.Tab.Execution, Glimpse.Mvc"/>

(continues on next page)

106 Chapter 7. Application Integration

http://getglimpse.com/
http://www.castleproject.org/projects/dynamicproxy/
http://www.castleproject.org/projects/dynamicproxy/

Autofac Documentation, Release 7.0.0

(continued from previous page)

</ignoredTypes>
</tabs>

</glimpse>

Again, you only need to do this if you’re using the action parameter injection. This is one of the many reasons it’s
recommended to use controller constructor injection instead of action method parameter injection.

For more info on why this is (including links to the associated info from Glimpse), check out this issue.

Unit Testing

When unit testing an ASP.NET MVC app that uses Autofac where you have InstancePerRequest components reg-
istered, you’ll get an exception when you try to resolve those components because there’s no HTTP request lifetime
during a unit test.

The per-request lifetime scope topic outlines strategies for testing and troubleshooting per-request-scope components.

Example

There is an example project showing ASP.NET MVC integration in the Autofac examples repository.

7.1.3 Web API

Web API 2 integration requires the Autofac.WebApi2 NuGet package.

Web API integration requires the Autofac.WebApi NuGet package.

Web API integration provides dependency injection integration for controllers, model binders, and action filters. It also
adds per-request lifetime support.

This page explains ASP.NET classic Web API integration. If you are using ASP.NET Core, see the ASP.NET Core
integration page.

• Quick Start

• Get the HttpConfiguration

• Register Controllers

• Set the Dependency Resolver

• Provide Filters via Dependency Injection

– Register the Filter Provider

– Implement the Filter Interface

∗ Standard Action Filter Interface

∗ Continuation Action Filter Interface

– Register the Filter

– Filter Overrides

– Setting the Response in an Autofac Action Filter

– Standard Web API Filter Attributes are Singletons

7.1. ASP.NET 107

https://github.com/autofac/Autofac.Mvc/issues/7
https://github.com/autofac/Examples/tree/master/src/MvcExample
https://www.nuget.org/packages/Autofac.WebApi2
https://www.nuget.org/packages/Autofac.WebApi/

Autofac Documentation, Release 7.0.0

– Instance Filters Don’t Get Injected

• Provide Model Binders via Dependency Injection

– Register the Binder Provider

– Register Model Binders

– Mark Parameters With ModelBinderAttribute

• Per-Controller-Type Services

– Add the Controller Configuration Attribute

– Supported Services

– Service Registration

– Clearing Existing Services

– Per-Controller-Type Service Limitations

• Batching

• OWIN Integration

• Unit Testing

• Example

Quick Start

To get Autofac integrated with Web API you need to reference the Web API integration NuGet package, register your
controllers, and set the dependency resolver. You can optionally enable other features as well.

protected void Application_Start()
{
var builder = new ContainerBuilder();

// Get your HttpConfiguration.
var config = GlobalConfiguration.Configuration;

// Register your Web API controllers.
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());

// OPTIONAL: Register the Autofac filter provider.
builder.RegisterWebApiFilterProvider(config);

// OPTIONAL: Register the Autofac model binder provider.
builder.RegisterWebApiModelBinderProvider();

// Set the dependency resolver to be Autofac.
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

}

The sections below go into further detail about what each of these features do and how to use them.

108 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

Get the HttpConfiguration

In Web API, setting up the application requires you to update properties and set values on an HttpConfiguration
object. Depending on how you’re hosting your application, where you get this configuration may be different. Through
the documentation, we’ll refer to “your HttpConfiguration” and you’ll need to make a choice of how to get it.

For standard IIS hosting, the HttpConfiguration is GlobalConfiguration.Configuration.

var builder = new ContainerBuilder();
var config = GlobalConfiguration.Configuration;
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

For self hosting, the HttpConfiguration is your HttpSelfHostConfiguration instance.

var builder = new ContainerBuilder();
var config = new HttpSelfHostConfiguration("http://localhost:8080");
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

For OWIN integration, the HttpConfiguration is the one you create in your app startup class and pass to the Web
API middleware.

var builder = new ContainerBuilder();
var config = new HttpConfiguration();
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

Register Controllers

At application startup, while building your Autofac container, you should register your Web API controllers and their
dependencies. This typically happens in an OWIN startup class or in the Application_Start method in Global.
asax.

By default types that implement IHttpController and have a name with the suffix Controller will be registered.

var builder = new ContainerBuilder();

// You can register controllers all at once using assembly scanning...
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());

// ...or you can register individual controllers manually.
builder.RegisterType<ValuesController>().InstancePerRequest();

If your controllers do not follow the standard naming convention you may choose to provide a custom suffix using an
overload of the RegisterApiControllers method.

// You can also use assembly scanning to register controllers with a custom suffix.
builder.RegisterApiControllers("MyCustomSuffix", Assembly.GetExecutingAssembly());

7.1. ASP.NET 109

Autofac Documentation, Release 7.0.0

Set the Dependency Resolver

After building your container pass it into a new instance of the AutofacWebApiDependencyResolver class.
Attach the new resolver to your HttpConfiguration.DependencyResolver to let Web API know that it
should locate services using the AutofacWebApiDependencyResolver. This is Autofac’s implementation of the
IDependencyResolver interface.

var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

Provide Filters via Dependency Injection

Because attributes are created via the reflection API you don’t get to call the constructor yourself. That leaves
you with no other option except for property injection when working with attributes. The Autofac integra-
tion with Web API provides a mechanism that allows you to create classes that implement the filter inter-
faces (IAutofacActionFilter, IAutofacContinuationActionFilter, IAutofacAuthorizationFilter and
IAutofacExceptionFilter) and wire them up to the desired controller or action method using the registration syntax
on the container builder.

Register the Filter Provider

You need to register the Autofac filter provider implementation because it does the work of wiring up the filter based
on the registration. This is done by calling the RegisterWebApiFilterProvider method on the container builder
and providing an HttpConfiguration instance.

var builder = new ContainerBuilder();
builder.RegisterWebApiFilterProvider(config);

Implement the Filter Interface

Instead of deriving from one of the existing Web API filter attributes your class implements the appropriate filter
interface defined in the integration.

Standard Action Filter Interface

The IAutofacActionFilter interface lets you define a filter that gets invoked before and after the execution of your
action, in a similar way as if you derived from ActionFilterAttribute.

The filter below is an action filter and implements IAutofacActionFilter instead of System.Web.Http.Filters.
IActionFilter.

public class LoggingActionFilter : IAutofacActionFilter
{
readonly ILogger _logger;

public LoggingActionFilter(ILogger logger)
{
_logger = logger;

}

(continues on next page)

110 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

public Task OnActionExecutingAsync(HttpActionContext actionContext, CancellationToken␣
→˓cancellationToken)
{
_logger.Write(actionContext.ActionDescriptor.ActionName);
return Task.FromResult(0);

}

public Task OnActionExecutedAsync(HttpActionExecutedContext actionExecutedContext,␣
→˓CancellationToken cancellationToken)
{
_logger.Write(actionExecutedContext.ActionContext.ActionDescriptor.ActionName);
return Task.FromResult(0);

}
}

Note in the sample there’s no actual async code that runs so it returns Task.FromResult(0), which is a common way
to return an “empty task.” If your filter does require async code, you can return a real Task object or use async/await
code just like any other asynchronous method.

Continuation Action Filter Interface

In addition to the regular IAutofacActionFilter in the example above, there is also an
IAutofacContinuationActionFilter. This interface also functions as an Action Filter, but rather than
having an OnActionExecutingAsync and OnActionExecutedAsync method, it follows the continuation style with
a single ExecuteActionFilterAsync method that takes a callback to run the next filter in the chain.

You may want to use IAutofacContinuationActionFilter instead of IAutofacActionFilter if you want to
wrap the entire request in a using block, such as when you want to allocate a TransactionScope to the request, like
so:

public class TransactionScopeFilter : IAutofacContinuationActionFilter
{

public async Task<HttpResponseMessage> ExecuteActionFilterAsync(
HttpActionContext actionContext,
CancellationToken cancellationToken,
Func<Task<HttpResponseMessage>> next)

{
using (new TransactionScope(TransactionScopeAsyncFlowOption.Enabled))
{

return await next();
}

}
}

Note: The regular IAutofacActionFilter runs inside a continuation filter, so async context is also preserved there
between OnActionExecutingAsync, the action method itself, and the OnActionExecutedAsync of the filter.

7.1. ASP.NET 111

Autofac Documentation, Release 7.0.0

Register the Filter

For the filter to execute you need to register it with the container and inform it which controller (or controllers), and
optionally action, should be targeted. This is done using ContainerBuilder extension methods, which exist for each
of the filter types:

• ActionFilter

• ActionFilterOverride

• AuthenticationFilter

• AuthenticationFilterOverride

• AuthorizationFilter

• AuthorizationFilterOverrideW

• ExceptionFilter

• ExceptionFilterOverride

For each of the filter types, there are a couple of registration methods:

AsWebApi{FilterType}ForAllControllers
Register this filter to run for all action methods on all controllers, in the same way as registering a global Web
API filter.

AsWebApi{FilterType}For<TController>()
Register the filter for the specified controller, in the same way that placing an attribute based filter at the controller
level would.

Specifying a base controller class will cause this filter to be applied to all controllers that derive from it.

This method takes an optional lambda expression that indicates a specific method on the controller the filter
should be applied to, as if you were applying a filter attribute to a specific action.

In the example below an Action filter is being applied to the Get action method on the ValuesController.

var builder = new ContainerBuilder();

builder.Register(c => new LoggingActionFilter(c.Resolve<ILogger>()))
.AsWebApiActionFilterFor<ValuesController>(c => c.Get(default(int)))
.InstancePerRequest();

When applying the filter to an action method that requires a parameter use the default keyword with the data
type of the parameter as a placeholder in your lambda expression. For example, the Get action method in the
example above required an int parameter and used default(int) as a strongly-typed placeholder in the lambda
expression.

AsWebApi{FilterType}Where()
The *Where methods allow you to specify a predicate that can make more advanced custom decisions about
which actions and/or controllers to attach to.

In the example below an Exception filter is being applied to all POST methods:

var builder = new ContainerBuilder();

builder.Register(c => new LoggingExceptionFilter(c.Resolve<ILogger>()))
.AsWebApiExceptionFilterWhere(action => action.SupportedHttpMethods.

→˓Contains(HttpMethod.Post))
.InstancePerRequest();

112 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

There is also a version of the predicate that receives an ILifetimeScope that you can use to consume services
inside your predicate:

var builder = new ContainerBuilder();

builder.Register(c => new LoggingExceptionFilter(c.Resolve<ILogger>()))
.AsWebApiExceptionFilterWhere((scope, action) => scope.Resolve<IFilterConfig>().

→˓ShouldFilter(action))
.InstancePerRequest();

Note: Filter predicates are invoked once for each action/filter combination; they are not invoked on every request.

You can apply as many filters as you want. Registering a filter of one type does not remove or replace previously
registered filters.

You can chain your filter registrations together to attach a filter against multiple controllers, like so:

builder.Register(c => new LoggingActionFilter(c.Resolve<ILogger>()))
.AsWebApiActionFilterFor<LoginController>()
.AsWebApiActionFilterFor<ValuesController>(c => c.Get(default(int)))
.AsWebApiActionFilterFor<ValuesController>(c => c.Post(default(string)))
.InstancePerRequest();

Filter Overrides

When registering filters, there are basic registration methods like AsWebApiActionFilterFor<TController>()
and override registration methods like AsWebApiActionFilterOverrideFor<TController>().

The point of the override methods is to provide a way to ensure certain filters execute first. You can have as many
overrides as you want - these aren’t replacement filters, just filters that run first.

Filters will run in the order:

• Controller-scoped overrides

• Action-scoped overrides

• Controller scoped filters

• Action scoped filters

Setting the Response in an Autofac Action Filter

In the same way as with standard Web API filters, you are able to set the HttpResponseMessage in the
OnActionExecutingAsync method of an action filter.

class RequestRejectionFilter : IAutofacActionFilter
{
public Task OnActionExecutingAsync(HttpActionContext actionContext, CancellationToken␣

→˓cancellationToken)
{
// Request is not valid for some reason.
actionContext.Response = actionContext.Request.CreateErrorResponse(HttpStatusCode.

(continues on next page)

7.1. ASP.NET 113

Autofac Documentation, Release 7.0.0

(continued from previous page)

→˓BadRequest, "Request not valid");
return Task.FromResult(0);

}

public void Task OnActionExecutedAsync(HttpActionExecutedContext actionExecutedContext,
→˓ CancellationToken cancellationToken)
{
}

}

To match the standard Web API behavior, if you set the Response property, then no subsequent action filters will be
invoked. However, any action filters already invoked will have OnActionExecutedAsync called with the appropriate
response populated.

Standard Web API Filter Attributes are Singletons

You may notice that if you use the standard Web API filters that you can’t use InstancePerRequest dependencies.

Unlike the filter provider in MVC, the one in Web API does not allow you to specify that the filter instances should
not be cached. This means that all filter attributes in Web API are effectively singleton instances that exist for the
entire lifetime of the application.

If you are trying to get per-request dependencies in a filter, you’ll find that will only work if you use the Autofac filter
interfaces. Using the standard Web API filters, the dependencies will be injected once - the first time the filter is resolved
- and never again.

The singleton nature of the existing Web API filter attributes is why we need our own filter interfaces.

If you are unable to use the Autofac interfaces and you need per-request or instance-per-dependency services in
your filters, you must use service location. Luckily, Web API makes getting the current request scope very easy - it
comes right along with the HttpRequestMessage.

Here’s an example of a filter that uses service location with the Web API IDependencyScope to get per-request de-
pendencies:

public class ServiceCallActionFilterAttribute : ActionFilterAttribute
{
public override void OnActionExecuting(HttpActionContext actionContext)
{
// Get the request lifetime scope so you can resolve services.
var requestScope = actionContext.Request.GetDependencyScope();

// Resolve the service you want to use.
var service = requestScope.GetService(typeof(IMyService)) as IMyService;

// Do the rest of the work in the filter.
service.DoWork();

}
}

114 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

Instance Filters Don’t Get Injected

When setting up filters, you may want to manually add filters to a collection like this:

config.Filters.Add(new MyActionFilter());

Autofac will not inject properties on filters registered this way. This is somewhat similar to when you use
RegisterInstance to put a pre-constructed instance of an object into Autofac - Autofac won’t inject or modify
pre-constructed instances. This same holds true for filter instances that are pre-constructed and added to a filter collec-
tion. As with attribute filters (as noted above), you can work around this by using service location rather than property
injection.

Provide Model Binders via Dependency Injection

The Autofac integration with Web API provides the ability to resolve your model binders using dependency injection
and associate binders with types using a fluent interface.

Register the Binder Provider

You need to register the Autofac model binder provider so it can resolve any registered IModelBinder implementations
when needed. This is done by calling the RegisterWebApiModelBinderProvider method on the container builder.

var builder = new ContainerBuilder();
builder.RegisterWebApiModelBinderProvider();

Register Model Binders

Once you’ve implemented System.Web.Http.ModelBinding.IModelBinder to handle binding concerns, register
it with Autofac and let Autofac know which types should be bound using that binder.

builder
.RegisterType<AutomobileBinder>()
.AsModelBinderForTypes(typeof(CarModel), typeof(TruckModel));

Mark Parameters With ModelBinderAttribute

Even if you have your model binder registered, you still need to mark your parameters with the [ModelBinder]
attribute so Web API knows to use a model binder instead of a media type formatter to bind your model. You don’t
have to specify the model binder type anymore, but you do have to mark the parameter with the attribute. This is also
mentioned in the Web API documentation.

public HttpResponseMessage Post([ModelBinder] CarModel car) { ... }

7.1. ASP.NET 115

https://docs.microsoft.com/en-us/aspnet/web-api/overview/formats-and-model-binding/parameter-binding-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/formats-and-model-binding/parameter-binding-in-aspnet-web-api

Autofac Documentation, Release 7.0.0

Per-Controller-Type Services

Web API has an interesting feature that allows you to configure the set of Web API services (those such
as IActionValueBinder) that should be used per-controller-type by adding an attribute that implements the
IControllerConfiguration interface to your controller.

Through the Services property on the HttpControllerSettings parameter passed to the
IControllerConfiguration.Initialize method you can override the global set of services. This attribute-based
approach seems to encourage you to directly instantiate service instances and then override the ones registered globally.
Autofac allows these per-controller-type services to be configured through the container instead of being buried away
in an attribute without dependency injection support.

Add the Controller Configuration Attribute

There is no escaping adding an attribute to the controller that the configuration should be applied
to because that is the extension point defined by Web API. The Autofac integration includes an
AutofacControllerConfigurationAttribute that you can apply to your Web API controllers to indicate
that they require per-controller-type configuration.

The point to remember here is that the actual configuration of what services should be applied will be done when
you build your container and there is no need to implement any of that in an actual attribute. In this case, the attribute
can be considered as purely a marker that indicates that the container will define the configuration information and
provide the service instances.

[AutofacControllerConfiguration]
public class ValuesController : ApiController
{
// Implementation...

}

Supported Services

The supported services can be divided into single-style or multiple-style services. For example, you can only have one
IHttpActionInvoker but you can have multiple ModelBinderProvider services.

You can use dependency injection for the following single-style services:

• IHttpActionInvoker

• HttpActionSelector

• ActionValueBinder

• IBodyModelValidator

• IContentNegotiator

• IHttpControllerActivator

• ModelMetadataProvider

The following multiple style services are supported:

• ModelBinderProvider

• ModelValidatorProvider

• ValueProviderFactory

116 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

• MediaTypeFormatter

In the list of the multiple-style services above the MediaTypeFormatter is actually the odd one out. Technically, it isn’t
actually a service and is added to the MediaTypeFormatterCollection on the HttpControllerSettings instance
and not the ControllerServices container. We figured that there was no reason to exclude MediaTypeFormatter
instances from dependency injection support and made sure that they could be resolved from the container per-controller
type, too.

Service Registration

Here is an example of registering a custom IHttpActionSelector implementation as
InstancePerApiControllerType() for the ValuesController. When applied to a controller type all de-
rived controllers will also receive the same configuration; the AutofacControllerConfigurationAttribute is
inherited by derived controller types and the same behavior applies to the registrations in the container. When you
register a single-style service it will always replace the default service configured at the global level.

builder.Register(c => new CustomActionSelector())
.As<IHttpActionSelector>()
.InstancePerApiControllerType(typeof(ValuesController));

Clearing Existing Services

By default, multiple-style services are appended to the existing set of services configured at the global level. When
registering multiple-style services with the container you can choose to clear the existing set of services so that only
the ones you have registered as InstancePerApiControllerType() will be used. This is done by setting the
clearExistingServices parameter to true on the InstancePerApiControllerType() method. Existing ser-
vices of that type will be removed if any of the registrations for the multiple-style service indicate that they want that
to happen.

builder.Register(c => new CustomModelBinderProvider())
.As<ModelBinderProvider>()
.InstancePerApiControllerType(
typeof(ValuesController),
clearExistingServices: true);

Per-Controller-Type Service Limitations

If you are using per-controller-type services, it is not possible to take dependencies on other services that are registered
as InstancePerRequest(). The problem is that Web API is caching these services and is not requesting them from
the container each time a controller of that type is created. It is most likely not possible for Web API to easily add that
support that without introducing the notion of a key (for the controller type) into the DI integration, which would mean
that all containers would need to support keyed services.

7.1. ASP.NET 117

Autofac Documentation, Release 7.0.0

Batching

If you choose to use the Web API batching functionality, be aware that the initial multipart request to the batch endpoint
is where Web API creates the request lifetime scope. The child requests that are part of the batch all take place in-
memory and will share that same request lifetime scope - you won’t get a different scope for each child request in the
batch.

This is due to the way the batch handling is designed within Web API and copies properties from the parent request to
the child request. One of the properties that is intentionally copied by the ASP.NET Web API framework from parent
to children is the request lifetime scope. There is no workaround for this and is outside the control of Autofac.

OWIN Integration

If you are using Web API as part of an OWIN application, you need to:

• Do all the stuff for standard Web API integration - register controllers, set the dependency resolver, etc.

• Set up your app with the base Autofac OWIN integration.

• Add a reference to the Autofac.WebApi2.Owin NuGet package.

• In your application startup class, register the Autofac Web API middleware after registering the base Autofac
middleware.

public class Startup
{
public void Configuration(IAppBuilder app)
{
var builder = new ContainerBuilder();

// STANDARD WEB API SETUP:

// Get your HttpConfiguration. In OWIN, you'll create one
// rather than using GlobalConfiguration.
var config = new HttpConfiguration();

// Register your Web API controllers.
builder.RegisterApiControllers(Assembly.GetExecutingAssembly());

// Run other optional steps, like registering filters,
// per-controller-type services, etc., then set the dependency resolver
// to be Autofac.
var container = builder.Build();
config.DependencyResolver = new AutofacWebApiDependencyResolver(container);

// OWIN WEB API SETUP:

// Register the Autofac middleware FIRST, then the Autofac Web API middleware,
// and finally the standard Web API middleware.
app.UseAutofacMiddleware(container);
app.UseAutofacWebApi(config);
app.UseWebApi(config);

}
}

118 Chapter 7. Application Integration

https://blogs.msdn.microsoft.com/webdev/2013/11/01/introducing-batch-support-in-web-api-and-web-api-odata/
https://www.nuget.org/packages/Autofac.WebApi2.Owin/

Autofac Documentation, Release 7.0.0

A common error in OWIN integration is use of the GlobalConfiguration.Configuration. In OWIN you create
the configuration from scratch. You should not reference GlobalConfiguration.Configuration anywhere when
using the OWIN integration.

Unit Testing

When unit testing an ASP.NET Web API app that uses Autofac where you have InstancePerRequest components
registered, you’ll get an exception when you try to resolve those components because there’s no HTTP request lifetime
during a unit test.

The per-request lifetime scope topic outlines strategies for testing and troubleshooting per-request-scope components.

Example

There is an example project showing Web API in conjunction with OWIN self hosting in the Autofac examples repos-
itory.

7.1.4 SignalR

SignalR integration requires the Autofac.SignalR NuGet package.

SignalR integration provides dependency injection integration for SignalR hubs. Due to SignalR internals, there is
no support in SignalR for per-request lifetime dependencies.

Along with this documentation that’s Autofac specific, you may also be interested in the Microsoft documentation on
SignalR and dependency injection.

• Quick Start

• Register Hubs

• Set the Dependency Resolver

• Managing Dependency Lifetimes

• OWIN Integration

Quick Start

To get Autofac integrated with SignalR you need to reference the SignalR integration NuGet package, register your
hubs, and set the dependency resolver.

protected void Application_Start()
{
var builder = new ContainerBuilder();

// Register your SignalR hubs.
builder.RegisterHubs(Assembly.GetExecutingAssembly());

// Set the dependency resolver to be Autofac.
var container = builder.Build();
GlobalHost.DependencyResolver = new AutofacDependencyResolver(container);

}

7.1. ASP.NET 119

https://github.com/autofac/Examples/tree/master/src/WebApiExample.OwinSelfHost
https://github.com/autofac/Examples/tree/master/src/WebApiExample.OwinSelfHost
https://nuget.org/packages/Autofac.SignalR/
http://www.asp.net/signalr/overview/advanced/dependency-injection
http://www.asp.net/signalr/overview/advanced/dependency-injection

Autofac Documentation, Release 7.0.0

The sections below go into further detail about what each of these features do and how to use them.

Register Hubs

At application startup, while building your Autofac container, you should register your SignalR hubs and their depen-
dencies. This typically happens in an OWIN startup class or in the Application_Start method in Global.asax.

var builder = new ContainerBuilder();

// You can register hubs all at once using assembly scanning...
builder.RegisterHubs(Assembly.GetExecutingAssembly());

// ...or you can register individual hubs manually.
builder.RegisterType<ChatHub>().ExternallyOwned();

If you register individual hubs, make sure they are registered as ExternallyOwned(). This ensures SignalR is allowed
to control disposal of the hubs rather than Autofac.

Set the Dependency Resolver

After building your container pass it into a new instance of the AutofacDependencyResolver class. Attach the new
resolver to your GlobalHost.DependencyResolver (or HubConfiguration.Resolver if you’re using OWIN) to
let SignalR know that it should locate services using the AutofacDependencyResolver. This is Autofac’s imple-
mentation of the IDependencyResolver interface.

var container = builder.Build();
GlobalHost.DependencyResolver = new AutofacDependencyResolver(container);

Managing Dependency Lifetimes

Given there is no support for per-request dependencies, all dependencies resolved for SignalR hubs come from the
root container.

• If you have IDisposable components, they will live for the lifetime of the application because Autofac will
hold them until the lifetime scope/container is disposed. You should register these as ExternallyOwned().

• Any components registered as InstancePerLifetimeScope() will effectively be singletons. Given there’s
one root lifetime scope, you’ll only get the one instance.

To make managing your hub dependency lifetimes easier you can have the root lifetime scope injected into the con-
structor of your hub. Next, create a child lifetime scope that you can use for the duration of your hub invocation and
resolve the required services. Finally, make sure you dispose the child lifetime when the hub is disposed by SignalR.
(This is similar to service location, but it’s the only way to get a “per-hub” sort of scope. No, it’s not awesome.)

public class MyHub : Hub
{
private readonly ILifetimeScope _hubLifetimeScope;
private readonly ILogger _logger;

public MyHub(ILifetimeScope lifetimeScope)
{
// Create a lifetime scope for the hub.
_hubLifetimeScope = lifetimeScope.BeginLifetimeScope();

(continues on next page)

120 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Resolve dependencies from the hub lifetime scope.
_logger = _hubLifetimeScope.Resolve<ILogger>();

}

public void Send(string message)
{
// You can use your dependency field here!
_logger.Write("Received message: " + message);

Clients.All.addMessage(message);
}

protected override void Dispose(bool disposing)
{
// Dispose the hub lifetime scope when the hub is disposed.
if (disposing && _hubLifetimeScope != null)
{
_hubLifetimeScope.Dispose();

}

base.Dispose(disposing);
}

}

If this is a common pattern in your application, you might consider creating a base/abstract hub from which other hubs
can derive to save all the copy/paste creation/disposal of scopes.

Injecting a lifetime scope into your hub does not give you per-request lifetime scopes. It just gives you a way
to manage dependency lifetime in a more active way than resolving everything from the root container. Using
InstancePerRequest, even with this workaround, will still fail. You may want to read the FAQ on per-request
scope for more info.

OWIN Integration

If you are using SignalR as part of an OWIN application, you need to:

• Do all the stuff for standard SignalR integration - register controllers, set the dependency resolver, etc.

• Set up your app with the base Autofac OWIN integration.

public class Startup
{
public void Configuration(IAppBuilder app)
{
var builder = new ContainerBuilder();

// STANDARD SIGNALR SETUP:

// Get your HubConfiguration. In OWIN, you'll create one
// rather than using GlobalHost.
var config = new HubConfiguration();

(continues on next page)

7.1. ASP.NET 121

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Register your SignalR hubs.
builder.RegisterHubs(Assembly.GetExecutingAssembly());

// Set the dependency resolver to be Autofac.
var container = builder.Build();
config.Resolver = new AutofacDependencyResolver(container);

// OWIN SIGNALR SETUP:

// Register the Autofac middleware FIRST, then the standard SignalR middleware.
app.UseAutofacMiddleware(container);
app.MapSignalR("/signalr", config);

// To add custom HubPipeline modules, you have to get the HubPipeline
// from the dependency resolver, for example:
var hubPipeline = config.Resolver.Resolve<IHubPipeline>();
hubPipeline.AddModule(new MyPipelineModule());

}
}

A common error in OWIN integration is use of the GlobalHost. In OWIN you create the configuration from
scratch. You should not reference GlobalHost anywhere when using the OWIN integration. Microsoft has documen-
tation about this and other IoC integration concerns here.

7.1.5 Web Forms

ASP.NET web forms integration requires the Autofac.Web NuGet package.

Web forms integration provides dependency injection integration for code-behind classes. It also adds per-request
lifetime support.

This page explains ASP.NET classic web forms integration. If you are using ASP.NET Core, see the ASP.NET Core
integration page.

• Quick Start

• Add Modules to Web.config

• Implement IContainerProviderAccessor in Global.asax

• Tips and Tricks

– Structuring Pages and User Controls for DI

– Manual Property Injection

– Explicit Injection via Attributes

– Dependency Injection via Base Page Class

– Custom Dependency Injection Modules

• Example

122 Chapter 7. Application Integration

http://www.asp.net/signalr/overview/advanced/dependency-injection
http://www.asp.net/signalr/overview/advanced/dependency-injection
https://www.nuget.org/packages/Autofac.Web/

Autofac Documentation, Release 7.0.0

Quick Start

To get Autofac integrated with web forms you need to reference the web forms integration NuGet package, add the
modules to web.config, and implement IContainerProviderAccessor on your Global application class.

Add the modules to web.config:

<configuration>
<system.web>
<httpModules>
<!-- This section is used for IIS6 -->
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"/>

<add
name="PropertyInjection"
type="Autofac.Integration.Web.Forms.PropertyInjectionModule, Autofac.Integration.

→˓Web"/>
</httpModules>

</system.web>
<system.webServer>
<!-- This section is used for IIS7 -->
<modules>
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"
preCondition="managedHandler"/>

<add
name="PropertyInjection"
type="Autofac.Integration.Web.Forms.PropertyInjectionModule, Autofac.Integration.

→˓Web"
preCondition="managedHandler"/>

</modules>
</system.webServer>

</configuration>

Implement IContainerProviderAccessor:

public class Global : HttpApplication, IContainerProviderAccessor
{
// Provider that holds the application container.
static IContainerProvider _containerProvider;

// Instance property that will be used by Autofac HttpModules
// to resolve and inject dependencies.
public IContainerProvider ContainerProvider
{
get { return _containerProvider; }

}

protected void Application_Start(object sender, EventArgs e)
{
// Build up your application container and register your dependencies.
var builder = new ContainerBuilder();

(continues on next page)

7.1. ASP.NET 123

Autofac Documentation, Release 7.0.0

(continued from previous page)

builder.RegisterType<SomeDependency>();
// ... continue registering dependencies...

// Once you're done registering things, set the container
// provider up with your registrations.
_containerProvider = new ContainerProvider(builder.Build());

}
}

The sections below go into further detail about what each of these features do and how to use them.

Add Modules to Web.config

The way that Autofac manages component lifetimes and adds dependency injection into the ASP.NET pipeline is
through the use of IHttpModule implementations. You need to configure these modules in web.config.

The following snippet config shows the modules configured.

<configuration>
<system.web>
<httpModules>
<!-- This section is used for IIS6 -->
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"/>

<add
name="PropertyInjection"
type="Autofac.Integration.Web.Forms.PropertyInjectionModule, Autofac.Integration.

→˓Web"/>
</httpModules>

</system.web>
<system.webServer>
<!-- This section is used for IIS7 -->
<modules>
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"
preCondition="managedHandler"/>

<add
name="PropertyInjection"
type="Autofac.Integration.Web.Forms.PropertyInjectionModule, Autofac.Integration.

→˓Web"
preCondition="managedHandler"/>

</modules>
</system.webServer>

</configuration>

Note that while there are two different sections the modules appear in - one each for IIS6 and IIS7 - it is recommended
that you have both in place. The ASP.NET Developer Server uses the IIS6 settings even if your target deployment
environment is IIS7. If you use IIS Express it will use the IIS7 settings.

The modules you see there do some interesting things:

124 Chapter 7. Application Integration

https://msdn.microsoft.com/en-us/library/system.web.ihttpmodule.aspx

Autofac Documentation, Release 7.0.0

• The ContainerDisposalModule lets Autofac dispose of any components created during request processing as
soon as the request completes.

• The PropertyInjectionModule injects dependencies into pages before the page lifecycle executes. An alterna-
tive UnsetPropertyInjectionModule is also provided which will only set properties on web forms/controls
that have null values. (Use only one or the other, but not both.)

Implement IContainerProviderAccessor in Global.asax

The dependency injection modules expect that the HttpApplication instance supports
IContainerProviderAccessor. A complete global application class is shown below:

public class Global : HttpApplication, IContainerProviderAccessor
{
// Provider that holds the application container.
static IContainerProvider _containerProvider;

// Instance property that will be used by Autofac HttpModules
// to resolve and inject dependencies.
public IContainerProvider ContainerProvider
{
get { return _containerProvider; }

}

protected void Application_Start(object sender, EventArgs e)
{
// Build up your application container and register your dependencies.
var builder = new ContainerBuilder();
builder.RegisterType<SomeDependency>();
// ... continue registering dependencies...

// Once you're done registering things, set the container
// provider up with your registrations.
_containerProvider = new ContainerProvider(builder.Build());

}
}

Autofac.Integration.Web.IContainerProvider exposes two useful properties: ApplicationContainer and
RequestLifetime.

• ApplicationContainer is the root container that was built at application start-up.

• RequestLifetime is a component lifetime scope based on the application container that will be disposed of at
the end of the current web request. It can be used whenever manual dependency resolution/service lookup is
required. The components that it contains (apart from any singletons) will be specific to the current request (this
is where per-request lifetime dependencies are resolved).

7.1. ASP.NET 125

Autofac Documentation, Release 7.0.0

Tips and Tricks

Structuring Pages and User Controls for DI

In order to inject dependencies into web forms pages (System.Web.UI.Page instances) or user controls (System.
Web.UI.UserControl instances) you must expose their dependencies as public properties that allow setting.
This enables the PropertyInjectionModule to populate those properties for you.

Be sure to register the dependencies you’ll need at application startup.

var builder = new ContainerBuilder();
builder.RegisterType<Component>().As<IService>().InstancePerRequest();
// ... continue registering dependencies and then build the
// container provider...
_containerProvider = new ContainerProvider(builder.Build());

Then in your page codebehind, create public get/set properties for the dependencies you’ll need:

// MyPage.aspx.cs
public partial class MyPage : Page
{
// This property will be set for you by the PropertyInjectionModule.
public IService MyService { get; set; }

protected void Page_Load(object sender, EventArgs e)
{
// Now you can use the property that was set for you.
label1.Text = this.MyService.GetMessage();

}
}

This same process of public property injection will work for user controls, too - just register the components at appli-
cation startup and provide public get/set properties for the dependencies.

It is important to note in the case of user controls that properties will only be automatically injected if the control
is created and added to the page’s Controls collection by the PreLoad step of the page request lifecycle. Controls
created dynamically either in code or through templates like the Repeater will not be visible at this point and must have
their properties manually injected.

Manual Property Injection

In some cases, like in programmatic creation of user controls or other objects, you may need to manually inject prop-
erties on an object. To do this, you need to:

• Get the current application instance.

• Cast it to Autofac.Integration.Web.IContainerProviderAccessor.

• Get the container provider from the application instance.

• Get the RequestLifetime from the IContainerProvider and use the InjectProperties() method to
inject the properties on the object.

In code, that looks like this:

126 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

var cpa = (IContainerProviderAccessor)HttpContext.Current.ApplicationInstance;
var cp = cpa.ContainerProvider;
cp.RequestLifetime.InjectProperties(objectToSet);

Note you need both the Autofac and Autofac.Integration.Web namespaces in there to make property injection
work because InjectProperties() is an extension method in the Autofac namespace.

Explicit Injection via Attributes

When adding dependency injection to an existing application, it is sometimes desirable to distinguish between web
forms pages that will have their dependencies injected and those that will not. The InjectPropertiesAttribute in
Autofac.Integration.Web, coupled with the AttributedInjectionModule help to achieve this.

If you choose to use the AttributedInjectionModule, no dependencies will be automatically injected into public
properties unless they’re marked with a special attribute.

First, remove the PropertyInjectionModule from your web.config file and replace it with the
AttributedInjectionModule:

<configuration>
<system.web>
<httpModules>
<!-- This section is used for IIS6 -->
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"/>

<add
name="AttributedInjection"
type="Autofac.Integration.Web.Forms.AttributedInjectionModule, Autofac.

→˓Integration.Web"/>
</httpModules>

</system.web>
<system.webServer>
<!-- This section is used for IIS7 -->
<modules>
<add
name="ContainerDisposal"
type="Autofac.Integration.Web.ContainerDisposalModule, Autofac.Integration.Web"
preCondition="managedHandler"/>

<add
name="AttributedInjection"
type="Autofac.Integration.Web.Forms.AttributedInjectionModule, Autofac.

→˓Integration.Web"
preCondition="managedHandler"/>

</modules>
</system.webServer>

</configuration>

Once this is in place, pages and controls will not have their dependencies injected by default. Instead, they
must be marked with the Autofac.Integration.Web.Forms.InjectPropertiesAttribute or Autofac.
Integration.Web.Forms.InjectUnsetPropertiesAttribute. The difference:

• InjectPropertiesAttribute will always set public properties on the page/control if there are associated
components registered with Autofac.

7.1. ASP.NET 127

Autofac Documentation, Release 7.0.0

• InjectUnsetPropertiesAttribute will only set the public properties on the page/control if they are null and
the associated components are registered.

[InjectProperties]
public partial class MyPage : Page
{
// This property will be set for you by the AttributedInjectionModule.
public IService MyService { get; set; }

// ...use the property later as needed.
}

Dependency Injection via Base Page Class

If you would rather not automatically inject properties using a module (e.g., the AttributedInjectionModule or
PropertyInjectionModule as mentioned earlier), you can integrate Autofac in a more manual manner by creating
a base page class that does manual property injection during the PreInit phase of the page request lifecycle.

This option allows you to derive pages that require dependency injection from a common base page class. Doing
this may be desirable if you have only a very few pages that require dependency injection and you don’t want the
AttributedInjectionModule in the pipeline. (You still need the ContainerDisposalModule.) If you have more
than a small few pages it may be beneficial to consider explicit injection via attributes.

protected void Page_PreInit(object sender, EventArgs e)
{
var cpa = (IContainerProviderAccessor)HttpContext.Current.ApplicationInstance;
var cp = cpa.ContainerProvider;
cp.RequestLifetime.InjectProperties(this);

}

Custom Dependency Injection Modules

If the provided Property, Unset Property, and Attributed dependency injection models are unsuitable, it is very easy to
create a custom injection behavior. Simply subclass Autofac.Integration.Web.DependencyInjectionModule
and use the result in Web.config.

There is one abstract member to implement:

protected abstract IInjectionBehavior GetInjectionBehaviorForHandlerType(Type␣
→˓handlerType);

The returned IInjectionBehavior can be one of the predefined NoInjection, PropertyInjection, or
UnsetPropertyInjection properties; or a custom implementation of the IInjectionBehavior interface.

128 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

Example

There is an example project showing ASP.NET web forms integration in the Autofac examples repository.

7.2 .NET Core

.NET Core comes with a conforming container in the form of Microsoft.Extensions.DependencyInjection. The
Autofac.Extensions.DependencyInjection package implements the abstractions for this to provide DI via Aut-
ofac.

The integration with ASP.NET Core is very similar to this since the whole framework has unified the abstraction around
dependency injection. Our ASP.NET Core integration docs have more info on specific topics relating to ASP.NET Core
(and generically hosted application) usage.

• Quick Start

• Using a Child Scope as a Root

7.2.1 Quick Start

To take advantage of Autofac in your .NET Core application via the Microsoft.Extensions.
DependencyInjection package:

• Reference the Autofac.Extensions.DependencyInjection package from NuGet.

• During application startup (e.g., in the Program or Startup class). . .

– Register services in an IServiceCollection using framework extensions.

– Populate those registered services into Autofac.

– Add Autofac registrations and overrides.

– Build your container.

– Create an AutofacServiceProvider using the container.

public class Program
{
public static void Main(string[] args)
{
// The Microsoft.Extensions.DependencyInjection.ServiceCollection
// has extension methods provided by other .NET Core libraries to
// register services with DI.
var serviceCollection = new ServiceCollection();

// The Microsoft.Extensions.Logging package provides this one-liner
// to add logging services.
serviceCollection.AddLogging();

var containerBuilder = new ContainerBuilder();

// Once you've registered everything in the ServiceCollection, call
// Populate to bring those registrations into Autofac. This is

(continues on next page)

7.2. .NET Core 129

https://github.com/autofac/Examples/tree/master/src/WebFormsExample
http://blog.ploeh.dk/2014/05/19/conforming-container/
https://github.com/aspnet/DependencyInjection

Autofac Documentation, Release 7.0.0

(continued from previous page)

// just like a foreach over the list of things in the collection
// to add them to Autofac.
containerBuilder.Populate(serviceCollection);

// Make your Autofac registrations. Order is important!
// If you make them BEFORE you call Populate, then the
// registrations in the ServiceCollection will override Autofac
// registrations; if you make them AFTER Populate, the Autofac
// registrations will override. You can make registrations
// before or after Populate, however you choose.
containerBuilder.RegisterType<MessageHandler>().As<IHandler>();

// Creating a new AutofacServiceProvider makes the container
// available to your app using the Microsoft IServiceProvider
// interface so you can use those abstractions rather than
// binding directly to Autofac.
var container = containerBuilder.Build();
var serviceProvider = new AutofacServiceProvider(container);

}
}

You don’t have to use Microsoft.Extensions.DependencyInjection. If you aren’t writing a .NET Core app that
requires it or if you’re not using any of the DI extensions provided by other libraries you can consume Autofac directly.
You also may only need to do the Populate() call and not need the AutofacServiceProvider. Use the pieces that
make sense for your app.

7.2.2 Using a Child Scope as a Root

In a complex application you may want to keep services registered using Populate() in a child lifetime scope. For
example, an application that does some self-hosting of ASP.NET Core components may want to keep the MVC regis-
trations and such isolated from the main container. The Populate() method offers an overload to allow you to specify
a tagged child lifetime scope that should serve as the “container” for items.

Note: If you use this, you will not be able to use the ASP.NET Core support for
IServiceProviderFactory{TContainerBuilder} (the ConfigureContainer support). This is because
IServiceProviderFactory{TContainerBuilder} assumes it’s working at the root level.

public class Program
{
private const string RootLifetimeTag = "MyIsolatedRoot";

public static void Main(string[] args)
{
var serviceCollection = new ServiceCollection();
serviceCollection.AddLogging();

var containerBuilder = new ContainerBuilder();
containerBuilder.RegisterType<MessageHandler>().As<IHandler>();
var container = containerBuilder.Build();

(continues on next page)

130 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

using(var scope = container.BeginLifetimeScope(RootLifetimeTag, b =>
{
b.Populate(serviceCollection, RootLifetimeTag);

}))
{
// This service provider will have access to global singletons
// and registrations but the "singletons" for things registered
// in the service collection will be "rooted" under this
// child scope, unavailable to the rest of the application.
//
// Obviously it's not super helpful being in this using block,
// so likely you'll create the scope at app startup, keep it
// around during the app lifetime, and dispose of it manually
// yourself during app shutdown.
var serviceProvider = new AutofacServiceProvider(scope);

}
}

}

7.3 ASP.NET Core

ASP.NET Core (previously ASP.NET 5) changes the way dependency injection frameworks have previously integrated
into ASP.NET execution. Previously, each functionality - MVC, Web API, etc. - had its own “dependency resolver”
mechanism and just slightly different ways to hook in. ASP.NET Core introduces a conforming container mechanism via
Microsoft.Extensions.DependencyInjection, including a unified notion of request lifetime scope, service registration,
and so forth.

Further, as of ASP.NET Core 3.0, there’s a “generic app hosting” mechanism in play that can be used in non-ASP.NET
Core apps.

This page explains ASP.NET Core and generic .NET Core hosting integration. If you are using ASP.NET classic,
see the ASP.NET classic integration page.

If you’re using .NET Core without ASP.NET Core (and/or without the generic hosting), there’s a simpler example here
showing that integration.

• Quick Start

– ASP.NET Core 1.1 - 2.2

– ASP.NET Core 3.0+ and Generic Hosting

– Startup Class

• Configuration Method Naming Conventions

• Dependency Injection Hooks

• Differences From ASP.NET Classic

• Controllers as Services

• Multitenant Support

• Using a Child Scope as a Root

7.3. ASP.NET Core 131

http://blog.ploeh.dk/2014/05/19/conforming-container/
https://github.com/aspnet/DependencyInjection

Autofac Documentation, Release 7.0.0

• Example

7.3.1 Quick Start

• Reference the Autofac.Extensions.DependencyInjection package from NuGet.

• In your Program.Main method, attach the hosting mechanism to Autofac. (See the examples below.)

• In the ConfigureServicesmethod of your Startup class register things into the IServiceCollection using
extension methods provided by other libraries.

• In the ConfigureContainer method of your Startup class register things directly into an Autofac
ContainerBuilder.

The IServiceProvider will automatically be created for you, so there’s nothing you have to do but register things.

ASP.NET Core 1.1 - 2.2

This example shows ASP.NET Core 1.1 - 2.2 usage, where you call services.AddAutofac() on the
WebHostBuilder. This is not for ASP.NET Core 3+ or the .NET Core 3+ generic hosting support - ASP.NET
Core 3 requires you to specify a service provider factory directly rather than adding it to the service collection.

public class Program
{
public static void Main(string[] args)
{
// ASP.NET Core 1.1 - 2.2:
// The ConfigureServices call here allows for
// ConfigureContainer to be supported in Startup with
// a strongly-typed ContainerBuilder.
// AddAutofac() is a convenience method for
// services.AddSingleton<IServiceProviderFactory<ContainerBuilder>>(new␣

→˓AutofacServiceProviderFactory())
var host = new WebHostBuilder()

.UseKestrel()

.ConfigureServices(services => services.AddAutofac())

.UseContentRoot(Directory.GetCurrentDirectory())

.UseIISIntegration()

.UseStartup<Startup>()

.Build();

host.Run();
}

}

This example shows ASP.NET Core 1.1 - 2.2 usage, where you return an IServiceProvider from the
ConfigureServices(IServiceCollection services) delegate. This is not for ASP.NET Core 3+ or the .NET
Core 3+ generic hosting support - ASP.NET Core 3 has deprecated the ability to return a service provider from
ConfigureServices.

public class Startup
{
public Startup(IHostingEnvironment env)

(continues on next page)

132 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
// In ASP.NET Core 3.0 env will be an IWebHostEnvironment , not IHostingEnvironment.
var builder = new ConfigurationBuilder()

.SetBasePath(env.ContentRootPath)

.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)

.AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)

.AddEnvironmentVariables();
this.Configuration = builder.Build();

}

public IConfigurationRoot Configuration { get; private set; }

public ILifetimeScope AutofacContainer { get; private set; }

// ConfigureServices is where you register dependencies and return an␣
→˓`IServiceProvider` implemented by `AutofacServiceProvider`.
// This is the old, not recommended way, and is NOT SUPPORTED in ASP.NET Core 3.0+.
public IServiceProvider ConfigureServices(IServiceCollection services)
{
// Add services to the collection
services.AddOptions();

// Create a container-builder and register dependencies
var builder = new ContainerBuilder();

// Populate the service-descriptors added to `IServiceCollection`
// BEFORE you add things to Autofac so that the Autofac
// registrations can override stuff in the `IServiceCollection`
// as needed
builder.Populate(services);

// Register your own things directly with Autofac
builder.RegisterModule(new MyApplicationModule());

AutofacContainer = builder.Build();

// this will be used as the service-provider for the application!
return new AutofacServiceProvider(AutofacContainer);

}

// Configure is where you add middleware.
// You can use IApplicationBuilder.ApplicationServices
// here if you need to resolve things from the container.
public void Configure(
IApplicationBuilder app,
ILoggerFactory loggerFactory)

{
loggerFactory.AddConsole(this.Configuration.GetSection("Logging"));
loggerFactory.AddDebug();
app.UseMvc();

}
}

7.3. ASP.NET Core 133

Autofac Documentation, Release 7.0.0

ASP.NET Core 3.0+ and Generic Hosting

Hosting changed in ASP.NET Core 3.0 and requires a different integration. You can no longer return
IServiceProvider from ConfigureServices, nor can you add your service provider factory to the service col-
lection.

This is for ASP.NET Core 3+ and the .NET Core 3+ generic hosting support:

public class Program
{
public static void Main(string[] args)
{
// ASP.NET Core 3.0+:
// The UseServiceProviderFactory call attaches the
// Autofac provider to the generic hosting mechanism.
var host = Host.CreateDefaultBuilder(args)

.UseServiceProviderFactory(new AutofacServiceProviderFactory())

.ConfigureWebHostDefaults(webHostBuilder => {
webHostBuilder
.UseContentRoot(Directory.GetCurrentDirectory())
.UseIISIntegration()
.UseStartup<Startup>();

})
.Build();

host.Run();
}

}

Startup Class

In your Startup class (which is basically the same across all the versions of ASP.NET Core) you then use
ConfigureContainer to access the Autofac container builder and register things directly with Autofac.

public class Startup
{
public Startup(IConfiguration configuration)
{
// In ASP.NET Core 3.x, using `Host.CreateDefaultBuilder` (as in the preceding␣

→˓Program.cs snippet) will
// set up some configuration for you based on your appsettings.json and environment␣

→˓variables. See "Remarks" at
// https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.hosting.host.

→˓createdefaultbuilder for details.
this.Configuration = configuration;

}

public IConfiguration Configuration { get; private set; }

public ILifetimeScope AutofacContainer { get; private set; }

// ConfigureServices is where you register dependencies. This gets
// called by the runtime before the ConfigureContainer method, below.

(continues on next page)

134 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

public void ConfigureServices(IServiceCollection services)
{
// Add services to the collection. Don't build or return
// any IServiceProvider or the ConfigureContainer method
// won't get called. Don't create a ContainerBuilder
// for Autofac here, and don't call builder.Populate() - that
// happens in the AutofacServiceProviderFactory for you.
services.AddOptions();

}

// ConfigureContainer is where you can register things directly
// with Autofac. This runs after ConfigureServices so the things
// here will override registrations made in ConfigureServices.
// Don't build the container; that gets done for you by the factory.
public void ConfigureContainer(ContainerBuilder builder)
{
// Register your own things directly with Autofac here. Don't
// call builder.Populate(), that happens in AutofacServiceProviderFactory
// for you.
builder.RegisterModule(new MyApplicationModule());

}

// Configure is where you add middleware. This is called after
// ConfigureContainer. You can use IApplicationBuilder.ApplicationServices
// here if you need to resolve things from the container.
public void Configure(
IApplicationBuilder app,
ILoggerFactory loggerFactory)

{
// If, for some reason, you need a reference to the built container, you
// can use the convenience extension method GetAutofacRoot.
this.AutofacContainer = app.ApplicationServices.GetAutofacRoot();

loggerFactory.AddConsole(this.Configuration.GetSection("Logging"));
loggerFactory.AddDebug();
app.UseMvc();

}
}

7.3.2 Configuration Method Naming Conventions

The Configure, ConfigureServices, and ConfigureContainer methods all support environment-specific nam-
ing conventions based on the IHostingEnvironment.EnvironmentName in your app. By default, the names are
Configure, ConfigureServices, and ConfigureContainer. If you want environment-specific setup you can put
the environment name after the Configure part, like ConfigureDevelopment, ConfigureDevelopmentServices,
and ConfigureDevelopmentContainer. If a method isn’t present with a name matching the environment it’ll fall
back to the default.

This means you don’t necessarily have to use Autofac configuration to switch configuration between a development and
production environment; you can set it up programmatically in Startup.

7.3. ASP.NET Core 135

Autofac Documentation, Release 7.0.0

public class Startup
{
public Startup(IHostingEnvironment env)
{
// Do Startup-ish things like read configuration.

}

// This is the default if you don't have an environment specific method.
public void ConfigureServices(IServiceCollection services)
{
// Add things to the service collection.

}

// This only gets called if your environment is Development. The
// default ConfigureServices won't be automatically called if this
// one is called.
public void ConfigureDevelopmentServices(IServiceCollection services)
{
// Add things to the service collection that are only for the
// development environment.

}

// This is the default if you don't have an environment specific method.
public void ConfigureContainer(ContainerBuilder builder)
{
// Add things to the Autofac ContainerBuilder.

}

// This only gets called if your environment is Production. The
// default ConfigureContainer won't be automatically called if this
// one is called.
public void ConfigureProductionContainer(ContainerBuilder builder)
{
// Add things to the ContainerBuilder that are only for the
// production environment.

}

// This is the default if you don't have an environment specific method.
public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
// Set up the application.

}

// This only gets called if your environment is Staging. The
// default Configure won't be automatically called if this one is called.
public void ConfigureStaging(IApplicationBuilder app, ILoggerFactory loggerFactory)
{
// Set up the application for staging.

}
}

This is a feature of the application hosting in ASP.NET Core - it is not an Autofac behavior. The StartupLoader class in
ASP.NET Core is what locates the methods to call during app startup. Check that class out if you want a more in-depth

136 Chapter 7. Application Integration

https://github.com/aspnet/Hosting/blob/rel/1.1.0/src/Microsoft.AspNetCore.Hosting/Internal/StartupLoader.cs
https://github.com/aspnet/Hosting/blob/rel/1.1.0/src/Microsoft.AspNetCore.Hosting/Internal/StartupLoader.cs

Autofac Documentation, Release 7.0.0

understanding of how this works.

7.3.3 Dependency Injection Hooks

Unlike ASP.NET classic integration, ASP.NET Core is designed specifically with dependency injection in mind. What
that means is if you’re trying to figure out, say, how to inject services into MVC views that’s now controlled by (and
documented by) ASP.NET Core - there’s not anything Autofac-specific you need to do other than set up your service
provider as outlined above.

Here are some helpful links into the ASP.NET Core documentation with specific insight into DI integration:

• ASP.NET Core dependency injection fundamentals

• Controller injection

• The Subtle Perils of Controller Dependency Injection in ASP.NET Core MVC

• Filter injection

• View injection

• Authorization requirement handlers injection

• Middleware options injection

• Middleware ‘Invoke’ method injection

• Wiring up EF 6 with ASP.NET Core

7.3.4 Differences From ASP.NET Classic

If you’ve used Autofac’s other ASP.NET integration then you may be interested in the key differences as you migrate to
using ASP.NET Core.

• Use InstancePerLifetimeScope instead of InstancePerRequest. In previous ASP.NET integration you could
register a dependency as InstancePerRequestwhich would ensure only one instance of the dependency would
be created per HTTP request. This worked because Autofac was in charge of setting up the per-request lifetime
scope. With the introduction of Microsoft.Extensions.DependencyInjection, the creation of per-request
and other child lifetime scopes is now part of the conforming container provided by the framework, so all child
lifetime scopes are treated equally - there’s no special “request level scope” anymore. Instead of registering your
dependencies InstancePerRequest, use InstancePerLifetimeScope and you should get the same behavior.
Note if you are creating your own lifetime scopes during web requests, you will get a new instance in these child
scopes.

• No more DependencyResolver. Other ASP.NET integration mechanisms required setting up a custom Autofac-
based dependency resolver in various locations. With Microsoft.Extensions.DependencyInjection and
the Startup.ConfigureServicesmethod, you now just return the IServiceProvider and “magic happens.”
Within controllers, classes, etc. if you need to manually do service location, get an IServiceProvider.

• No special middleware. The OWIN integration previously required registration of a special Autofac middleware
to manage the request lifetime scope. Microsoft.Extensions.DependencyInjection does the heavy lifting
now, so there’s no additional middleware to register.

• No manual controller registration. You used to be required to register all of your controllers with Autofac so DI
would work. The ASP.NET Core framework now automatically passes all controllers through service resolution
so you don’t have to do that.

7.3. ASP.NET Core 137

https://docs.asp.net/en/latest/mvc/views/dependency-injection.html
https://docs.asp.net/en/latest/fundamentals/dependency-injection.html
https://docs.asp.net/en/latest/mvc/controllers/dependency-injection.html
http://www.strathweb.com/2016/03/the-subtle-perils-of-controller-dependency-injection-in-asp-net-core-mvc/
https://docs.asp.net/en/latest/mvc/controllers/filters.html#configuring-filters
https://docs.asp.net/en/latest/mvc/views/dependency-injection.html
https://docs.asp.net/en/latest/security/authorization/dependencyinjection.html
https://docs.asp.net/en/latest/migration/http-modules.html#loading-middleware-options-through-direct-injection
https://docs.asp.net/en/latest/fundamentals/middleware.html
https://docs.asp.net/en/latest/data/entity-framework-6.html#setup-connection-strings-and-dependency-injection
http://blog.ploeh.dk/2014/05/19/conforming-container/

Autofac Documentation, Release 7.0.0

• No extensions for invoking middleware via dependency injection. The OWIN integration had extensions like
UseAutofacMiddleware() to allow DI into middleware. This happens automatically now through a combi-
nation of auto-injected constructor parameters and dynamically resolved parameters to the Invoke method of
middleware. The ASP.NET Core framework takes care of it all.

• MVC and Web API are one thing. There used to be different ways to hook into DI based on whether you
were using MVC or Web API. These two things are combined in ASP.NET Core so there’s only one dependency
resolver to set up, only one configuration to maintain.

• Controllers aren’t resolved from the container; just controller constructor parameters. That means con-
troller lifecycles, property injection, and other things aren’t managed by Autofac - they’re managed by ASP.NET
Core. You can change that using AddControllersAsServices() - see the discussion below.

7.3.5 Controllers as Services

By default, ASP.NET Core will resolve the controller parameters from the container but doesn’t actually resolve the
controller from the container. This usually isn’t an issue but it does mean:

• The lifecycle of the controller is handled by the framework, not the request lifetime.

• The lifecycle of controller constructor parameters is handled by the request lifetime.

• Special wiring that you may have done during registration of the controller (like setting up property injection)
won’t work.

You can change this by specifying AddControllersAsServices() when you register MVC with the service collec-
tion. Doing that will automatically register controller types into the IServiceCollection when the service provider
factory calls builder.Populate(services).

public class Startup
{
// Omitting extra stuff so you can see the important part...
public void ConfigureServices(IServiceCollection services)
{
// Add controllers as services so they'll be resolved.
services.AddMvc().AddControllersAsServices();

}

public void ConfigureContainer(ContainerBuilder builder)
{
// If you want to set up a controller for, say, property injection
// you can override the controller registration after populating services.
builder.RegisterType<MyController>().PropertiesAutowired();

}
}

There is a more detailed article with a walkthrough on Filip Woj’s blog. Note one of the commenters there found some
changes based on how RC2 handles controllers as services.

138 Chapter 7. Application Integration

https://docs.asp.net/en/latest/fundamentals/middleware.html
https://docs.asp.net/en/latest/fundamentals/middleware.html
http://www.strathweb.com/2016/03/the-subtle-perils-of-controller-dependency-injection-in-asp-net-core-mvc/
http://www.strathweb.com/2016/03/the-subtle-perils-of-controller-dependency-injection-in-asp-net-core-mvc/#comment-2702995712
http://www.strathweb.com/2016/03/the-subtle-perils-of-controller-dependency-injection-in-asp-net-core-mvc/#comment-2702995712

Autofac Documentation, Release 7.0.0

7.3.6 Multitenant Support

Due to the way ASP.NET Core is eager about generating the request lifetime scope it causes multitenant support to not
quite work out of the box. Sometimes the IHttpContextAccessor, commonly used in tenant identification, also isn’t
set up in time. The Autofac.AspNetCore.Multitenant package was added to fix that.

To enable multitenant support:

• Add a reference to the Autofac.AspNetCore.Multitenant NuGet package.

• In your Program.Main when building the web host include a call to the UseServiceProviderFactory ex-
tension and use the AutofacMultitenantServiceProviderFactory. Provide a callback that will configure
your tenants.

• In Startup.ConfigureServices and Startup.ConfigureContainer register things that go in the root
container that aren’t tenant-specific.

• In the callback (e.g., Startup.ConfigureMultitenantContainer) is where you build your multitenant con-
tainer.

Here’s an example of what you do in Program.Main:

public class Program
{
public static async Task Main(string[] args)
{
var host = Host

.CreateDefaultBuilder(args)

.UseServiceProviderFactory(new AutofacMultitenantServiceProviderFactory(Startup.
→˓ConfigureMultitenantContainer))

.ConfigureWebHostDefaults(webHostBuilder => webHostBuilder.UseStartup<Startup>())

.Build();

await host.RunAsync();
}

}

. . . and here’s what Startup looks like:

public class Startup
{
// Omitting extra stuff so you can see the important part...
public void ConfigureServices(IServiceCollection services)
{
// This will all go in the ROOT CONTAINER and is NOT TENANT SPECIFIC.
services.AddMvc();

// This adds the required middleware to the ROOT CONTAINER and is required for␣
→˓multitenancy to work.

services.AddAutofacMultitenantRequestServices();
}

public void ConfigureContainer(ContainerBuilder builder)
{
// This will all go in the ROOT CONTAINER and is NOT TENANT SPECIFIC.
builder.RegisterType<Dependency>().As<IDependency>();

(continues on next page)

7.3. ASP.NET Core 139

https://github.com/autofac/Autofac.AspNetCore.Multitenant

Autofac Documentation, Release 7.0.0

(continued from previous page)

}

public static MultitenantContainer ConfigureMultitenantContainer(IContainer container)
{
// This is the MULTITENANT PART. Set up your tenant-specific stuff here.
var strategy = new MyTenantIdentificationStrategy();
var mtc = new MultitenantContainer(strategy, container);
mtc.ConfigureTenant("a", cb => cb.RegisterType<TenantDependency>().As<IDependency>

→˓());
return mtc;

}
}

7.3.7 Using a Child Scope as a Root

In a complex application you may want to keep services partitioned such that the root container is shared across different
parts of the app, but a child lifetime scope is used for the hosted portion (e.g., the ASP.NET Core piece).

In standard ASP.NET Core integration and generic hosted application support there’s an
AutofacChildLifetimeScopeServiceProviderFactory you can use instead of the standard
AutofacServiceProviderFactory. This allows you to provide configuration actions that will be attached to
a specific named lifetime scope rather than a built container.

public class Program
{
public static async Task Main(string[] args)
{
// create the root-container and register global dependencies
var containerBuilder = new ContainerBuilder();

builder.RegisterType<SomeGlobalDependency>()
.As<ISomeGlobalDependency>()
.InstancePerLifetimeScope();

var container = containerBuilder.Build();

// The UseServiceProviderFactory call attaches the
// Autofac provider to the generic hosting mechanism.
var hostOne = Host
.CreateDefaultBuilder(args)
.UseServiceProviderFactory(new␣

→˓AutofacChildLifetimeScopeServiceProviderFactory(container.BeginLifetimeScope("root-one
→˓")))

.ConfigureWebHostDefaults(webHostBuilder => {
webHostBuilder
.UseContentRoot(AppContext.BaseDirectory)
// Each host listens to a different URL, they have the same root container␣

→˓to share SingleInstance
// things, but they each have their own logical root lifetime scope.␣

→˓Registering things
// as `InstancePerMatchingLifetimeScope("root-one")` (the name of the scope␣

(continues on next page)

140 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

→˓given above)
// will result in a singleton that's ONLY used by this first host.
.UseUrls("http://localhost:5000")
.UseStartup<StartupOne>();

})
.Build();

// The UseServiceProviderFactory call attaches the
// Autofac provider to the generic hosting mechanism.
var hostTwo = Host
.CreateDefaultBuilder(args)
.UseServiceProviderFactory(new␣

→˓AutofacChildLifetimeScopeServiceProviderFactory(container.BeginLifetimeScope("root-two
→˓")))

.ConfigureWebHostDefaults(webHostBuilder => {
webHostBuilder
.UseContentRoot(AppContext.BaseDirectory)
// As with the first host, the second host will share the root container but␣

→˓have its own
// root lifetime scope `root-two`. Things registered␣

→˓`InstancePerMatchingLifetimeScope("root-two")`
// will be singletons ONLY used by this second host.
.UseUrls("http://localhost:5001")
.UseStartup<StartupTwo>();

})
.Build();

await Task.WhenAll(hostOne.RunAsync(), hostTwo.RunAsync())
}

}

This will change how your Startup class works - you won’t use a ContainerBuilder directly in
ConfigureContainer, now it’s an AutofacChildLifetimeScopeConfigurationAdapter:

public class StartupOne
{
// IHostingEnvironment when running applications below ASP.NET Core 3.0
public Startup(IWebHostEnvironment env)
{
// Fill this in if needed...

}

public void ConfigureServices(IServiceCollection services)
{
// The usual ConfigureServices registrations on the service collection...

}

// Here's the change for child lifetime scope usage! Register your "root"
// child lifetime scope things with the adapter.
public void ConfigureContainer(AutofacChildLifetimeScopeConfigurationAdapter config)
{

config.Add(builder => builder.RegisterModule(new AutofacHostOneModule()));
(continues on next page)

7.3. ASP.NET Core 141

Autofac Documentation, Release 7.0.0

(continued from previous page)

}

public void Configure(
IApplicationBuilder app,
ILoggerFactory loggerFactory)

{
// The usual app configuration stuff...

}
}

public class StartupTwo
{
// IHostingEnvironment when running applications below ASP.NET Core 3.0
public Startup(IWebHostEnvironment env)
{
// Fill this in if needed...

}

public void ConfigureServices(IServiceCollection services)
{
// The usual ConfigureServices registrations on the service collection...

}

// Here's the change for child lifetime scope usage! Register your "root"
// child lifetime scope things with the adapter.
public void ConfigureContainer(AutofacChildLifetimeScopeConfigurationAdapter config)
{

config.Add(builder => builder.RegisterModule(new AutofacHostTwoModule()));
}

public void Configure(
IApplicationBuilder app,
ILoggerFactory loggerFactory)

{
// The usual app configuration stuff...

}
}

If you’re not using the service provider factory, the Populate() method offers an overload to allow you to specify a
tagged child lifetime scope that should serve as the “container” for items.

The .NET Core integration documentation also shows an example of using a child lifetime scope as a root.

Using a child lifetime scope as the root is not compatible with multitenant support. You must choose one or the other,
not both.

142 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

7.3.8 Example

There is an example project showing ASP.NET Core integration in the Autofac examples repository.

7.4 Azure Functions

Azure Functions supports dependency injection with the Microsoft dependency injection framework out of the box,
but you can make it work with Autofac with a bit of bootstrapping code.

We recommend reading the official Microsoft documentation for an overview of dependency injection in the context
of Azure Functions.

• Overview of Steps

• Autofac Job Activator

• Startup Class

• Example Function

• Acknowledgements

7.4.1 Overview of Steps

1. Install Autofac, Autofac.Extensions.DependencyInjection, and Microsoft.Azure.Functions.
Extensions from NuGet.

2. Add an Autofac-based job activator to create instances of your function classes.

3. Create a Startup class where you register your components and replace the default job activator.

7.4.2 Autofac Job Activator

A job activator is responsible for instantiating the classes that hold your functions. Add the following code to your
project — it’s a job activator that resolves the appropriate class from an Autofac lifetime scope. We’ll implement
LifetimeScopeWrapper and LoggerModule in the next steps.

internal class AutofacJobActivator : IJobActivatorEx
{

public T CreateInstance<T>()
{

// In practice, this method will not get called. We cannot safely resolve T here
// because we don't have access to an ILifetimeScope, so it's better to just
// throw.
throw new NotSupportedException();

}

public T CreateInstance<T>(IFunctionInstanceEx functionInstance)
where T : notnull

{
var lifetimeScope = functionInstance.InstanceServices

.GetRequiredService<LifetimeScopeWrapper>()
(continues on next page)

7.4. Azure Functions 143

https://github.com/autofac/Examples/tree/master/src/AspNetCoreExample
https://docs.microsoft.com/en-us/azure/azure-functions/functions-dotnet-dependency-injection

Autofac Documentation, Release 7.0.0

(continued from previous page)

.Scope;

// This is necessary because some dependencies of ILoggerFactory are registered
// after FunctionsStartup.
var loggerFactory = functionInstance.InstanceServices.GetRequiredService

→˓<ILoggerFactory>();
lifetimeScope.Resolve<ILoggerFactory>(

new NamedParameter(LoggerModule.LoggerFactoryParam, loggerFactory)
);
lifetimeScope.Resolve<ILogger>(

new NamedParameter(LoggerModule.FunctionNameParam, functionInstance.
→˓FunctionDescriptor.LogName)

);

return lifetimeScope.Resolve<T>();
}

}

Next, implement LifetimeScopeWrapper. This class is resolved from the IServiceCollection and allows us to
dispose the Autofac lifetime scope after the function has completed.

internal sealed class LifetimeScopeWrapper : IDisposable
{

public ILifetimeScope Scope { get; }

public LifetimeScopeWrapper(IContainer container)
{

Scope = container.BeginLifetimeScope();
}

public void Dispose()
{

Scope.Dispose();
}

}

Special logic is needed for us to be able to resolve ILogger because certain logger factories are not initialized until
after the Startup class has run. We can work around this by adding the following code.

internal class LoggerModule : Module
{

public const string LoggerFactoryParam = "loggerFactory";
public const string FunctionNameParam = "functionName";

protected override void Load(ContainerBuilder builder)
{

builder.Register((ctx, p) => p.Named<ILoggerFactory>(LoggerFactoryParam))
.SingleInstance();

builder.Register((ctx, p) =>
{

var factory = ctx.Resolve<ILoggerFactory>();
(continues on next page)

144 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

var functionName = p.Named<string>(FunctionNameParam);

return factory.CreateLogger(Microsoft.Azure.WebJobs.Logging.
→˓LogCategories.CreateFunctionUserCategory(functionName));

})
.InstancePerLifetimeScope();

}
}

LoggerModule should be included in your project even if you don’t use ILogger directly, since this interface is refer-
enced by many of Microsoft’s NuGet packages.

7.4.3 Startup Class

Finally, add a Startup class to tie everything together. This class is conceptually very similar to the Startup class in
ASP.NET Core projects.

The FunctionsStartup base class is provided by the Microsoft.Azure.Functions.ExtensionsNuGet package.

[assembly: FunctionsStartup(typeof(MyFunctionApp.Startup))]

namespace MyFunctionApp;

internal class Startup : FunctionsStartup
{

public override void Configure(IFunctionsHostBuilder builder)
{

// Use IServiceCollection.Add extension method to add features as needed, e.g.
builder.Services.AddDataProtection();

builder.Services.AddSingleton(GetContainer(builder.Services));

// Important: Use AddScoped so our Autofac lifetime scope gets disposed
// when the function finishes executing
builder.Services.AddScoped<LifetimeScopeWrapper>();

builder.Services.Replace(ServiceDescriptor.Singleton(typeof(IJobActivator),␣
→˓typeof(AutofacJobActivator)));

builder.Services.Replace(ServiceDescriptor.Singleton(typeof(IJobActivatorEx),␣
→˓typeof(AutofacJobActivator)));

}

private static IContainer GetContainer(IServiceCollection serviceCollection)
{

var containerBuilder = new ContainerBuilder();
containerBuilder.Populate(serviceCollection);
containerBuilder.RegisterModule<LoggerModule>();

// This is a convenient way to register all your function classes at once
containerBuilder.RegisterAssemblyTypes(typeof(Startup).Assembly)

.InNamespaceOf<Function1>();

(continues on next page)

7.4. Azure Functions 145

Autofac Documentation, Release 7.0.0

(continued from previous page)

// TODO: Register other dependencies with the ContainerBuilder like normal

return containerBuilder.Build();
}

}

And that’s it! Your function classes will now be resolved from Autofac.

7.4.4 Example Function

Here’s an example of an HTTP-triggered function that uses a service from dependency injection. Notice that the class
and Run method are not static.

public class Function1
{

private readonly IRandomNumberService _randomNumberService;

public Function1(IRandomNumberService randomNumberService)
{

_randomNumberService = randomNumberService;
}

// Call this by going to http://localhost:7071/api/Function1 in your web browser
[FunctionName("Function1")]
public IActionResult Run(

[HttpTrigger(AuthorizationLevel.Function, "get", Route = null)]
HttpRequest request

)
{

var number = _randomNumberService.GetDouble();

return new OkObjectResult($"Your random number is {number}.");
}

}

146 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

7.4.5 Acknowledgements

This guide was inspired by Autofac.Extensions.DependencyInjection.AzureFunctions, a community NuGet package.
Give Autofac.Extensions.DependencyInjection.AzureFunctions a try if you would prefer a NuGet package
over the DIY approach presented here.

7.5 Blazor

ASP.NET Core Blazor uses the generic app hosting in ASP.NET Core 3+ but the two hosting models have slightly
different integrations.

Server-side implementations are configured in exactly the same way as any other ASP.NET Core 3 application.

Client-side injection is slightly more restricted due to requirements for WebAssembly hosting.

This example for WebAssembly works as of March 30, 2021 with .NET 5. Example:

public class Program
{
public static async Task Main(string[] args)
{

var builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.ConfigureContainer(new AutofacServiceProviderFactory(ConfigureContainer));

builder.RootComponents.Add<App>("#app");

await builder.Build().RunAsync();
}

private static void ConfigureContainer(ContainerBuilder builder)
{
// add any registrations here

}
}

Once registered, Blazor components can use dependency injection via the standard @inject Razor directive.

7.6 Windows Communication Foundation (WCF)

WCF integration for both clients and services requires the Autofac.Wcf NuGet package.

WCF integration provides dependency injection integration for services as well as client proxies. Due to WCF inter-
nals, there is no explicit support in WCF for per-request lifetime dependencies.

• Clients

• Services

– Quick Start

– Register Service Implementations

7.5. Blazor 147

https://github.com/junalmeida/autofac-azurefunctions
https://docs.microsoft.com/en-gb/aspnet/core/blazor/
https://docs.microsoft.com/en-gb/aspnet/core/blazor/hosting-models
https://webassembly.org
https://docs.microsoft.com/en-gb/aspnet/core/blazor/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/blazor/dependency-injection?view=aspnetcore-3.0#request-a-service-in-a-component
https://www.nuget.org/packages/Autofac.Wcf/

Autofac Documentation, Release 7.0.0

∗ Register By Type

∗ Register by Interface

∗ Register by Name

– Pick the Right Host Factory

– Svc-Less Services

– Extensionless Services

– WAS Hosting and Non-HTTP Activation

– Self-Hosting

– Handling InstanceContextMode.Single Services

∗ IIS/WAS Hosted

∗ Self-Hosted

– Simulating a Request Lifetime Scope

– Using Decorators With Services

– Example

7.6.1 Clients

There are a couple of benefits to using Autofac in conjunction with your service client application:

• Deterministic disposal: Automatically free resources consumed by proxies created by ChannelFactory.
CreateChannel<T>().

• Easy service proxy injection: For types that consume services you can easily inject a dependency on the service
interface type.

During application startup, for each service register a ChannelFactory<T> and a function that uses the factory to
open channels:

var builder = new ContainerBuilder();

// Register the channel factory for the service. Make it
// SingleInstance since you don't need a new one each time.
builder
.Register(c => new ChannelFactory<ITrackListing>(
new BasicHttpBinding(),
new EndpointAddress("http://localhost/TrackListingService")))

.SingleInstance();

// Register the service interface using a lambda that creates
// a channel from the factory. Include the UseWcfSafeRelease()
// helper to handle proper disposal.
builder
.Register(c => c.Resolve<ChannelFactory<ITrackListing>>().CreateChannel())
.As<ITrackListing>()
.UseWcfSafeRelease();

(continues on next page)

148 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

// You can also register other dependencies.
builder.RegisterType<AlbumPrinter>();

var container = builder.Build();

In this example. . .

• The call to CreateChannel() isn’t executed until ITrackListing is requested from the container.

• The UseWcfSafeRelease() configuration option ensures that exception messages are not lost when disposing
client channels.

When consuming the service, add a constructor dependency as normal. This example shows an application that prints
a track listing to the console using the remote ITrackListing service. It does this via the AlbumPrinter class:

public class AlbumPrinter
{
readonly ITrackListing _trackListing;

public AlbumPrinter(ITrackListing trackListing)
{
_trackListing = trackListing;

}

public void PrintTracks(string artist, string album)
{
foreach (var track in _trackListing.GetTracks(artist, album))

Console.WriteLine("{0} - {1}", track.Position, track.Title);
}

}

When you resolve the AlbumPrinter class from a lifetime scope, the channel to the ITrackListing service will be
injected for you.

Note that, given the service proxy is disposable, it should be resolved from a child lifetime scope, not the root container.
Thus, if you have to manually resolve it (for whatever reason), be sure you’re creating a child scope from which to do
it:

using(var lifetime = container.BeginLifetimeScope())
{
var albumPrinter = lifetime.Resolve<AlbumPrinter>();
albumPrinter.PrintTracks("The Shins", "Wincing the Night Away");

}

7.6.2 Services

Quick Start

To get Autofac integrated with WCF on the service side you need to reference the WCF integration NuGet package,
register your services, and set the dependency resolver. You also need to update your .svc files to reference the Autofac
service host factory.

Here’s a sample application startup block:

7.6. Windows Communication Foundation (WCF) 149

Autofac Documentation, Release 7.0.0

protected void Application_Start()
{
var builder = new ContainerBuilder();

// Register your service implementations.
builder.RegisterType<TestService.Service1>();

// Set the dependency resolver.
var container = builder.Build();
AutofacHostFactory.Container = container;

}

And here’s a sample .svc file.

<%@ ServiceHost
Service="TestService.Service1, TestService"
Factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.Wcf"

→˓%>

The sections below go into further detail about what each of these features do and how to use them.

Register Service Implementations

You can register your service types in one of three ways: by type, by interface, or by name.

Register By Type

Your first option is to simply register the service implementation type in the container and specify that implementation
type in the .svc file. This is the most common usage.

In your application startup, you’d have code like this:

var builder = new ContainerBuilder();
builder.RegisterType<TestService.Service1>();
AutofacHostFactory.Container = builder.Build();

And your .svc file would specify the appropriate service implementation type and host factory, like this:

<%@ ServiceHost
Service="TestService.Service1, TestService"
Factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.Wcf"

→˓%>

Note that you need to use the fully-qualified name of your service in the .svc file, i.e. Service="Namespace.
ServiceType, AssemblyName".

150 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

Register by Interface

Your second option is to register the contract type in the container and specify the contract in the .svc file. This is
handy if you don’t want to change the .svc file but do want to change the implementation type that will handle requests.

In your application startup, you’d have code like this:

var builder = new ContainerBuilder();
builder.RegisterType<TestService.Service1>()

.As<TestService.IService1>();
AutofacHostFactory.Container = builder.Build();

And your .svc file would specify the service contract type and host factory, like this:

<%@ ServiceHost
Service="TestService.IService1, TestService"
Factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.Wcf"

→˓%>

Note that you need to use the fully-qualified name of your contract in the .svc file, i.e. Service="Namespace.
IContractType, AssemblyName".

Register by Name

The third option you have is to register a named service implementation in the container and specify that service name
in the .svc file. This is handy if you want even further abstraction away from the .svc file.

In your application startup, you’d have code like this:

var builder = new ContainerBuilder();
builder.RegisterType<TestService.Service1>()

.Named<object>("my-service");
AutofacHostFactory.Container = builder.Build();

Note that the service implementation type is registered as an object - this is important. Your service implementation
won’t be found if it’s a named service and it’s not registered as an object.

Your .svc file specifies the service name you registered and host factory, like this:

<%@ ServiceHost
Service="my-service"
Factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.Wcf"

→˓%>

Pick the Right Host Factory

WCF offers two service host factories. Autofac has corresponding implementations for each.

If you were using ServiceHostFactory in your .svc file, update to the AutofacServiceHostFactory. This is the
most common usage of Autofac and WCF.

If you were using WebServiceHostFactory in your .svc file, update to AutofacWebServiceHostFactory.

7.6. Windows Communication Foundation (WCF) 151

Autofac Documentation, Release 7.0.0

Svc-Less Services

If you want to use services without an .svc file, Autofac will work with that.

As shown above, register your service with the container.

var builder = new ContainerBuilder();
builder.RegisterType<Service1>();
AutofacHostFactory.Container = builder.Build();

To use svc-less services, add a factory entry under the serviceActivation element in the web.config file. This
ensures that the AutofacServiceHostFactory is used to activate the service.

<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled=
→˓"true">
<serviceActivations>
<add factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.

→˓Wcf"
relativeAddress="~/Service1.svc"
service="TestService.Service1, TestService" />

</serviceActivations>
</serviceHostingEnvironment>

Extensionless Services

If you want extensionless services, register your service with the container as shown above.

var builder = new ContainerBuilder();
builder.RegisterType<Service1>();
AutofacHostFactory.Container = builder.Build();

Then define a new ServiceRoute using the AutofacServiceHostFactory and service implementation type.

RouteTable.Routes.Add(new ServiceRoute("Service1", new AutofacServiceHostFactory(),␣
→˓typeof(Service1)));

Finally, add the UrlRoutingModule to the web.config file.

<system.webServer>
<modules runAllManagedModulesForAllRequests="true">
<add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule, System.Web,␣

→˓Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
</modules>
<handlers>
<add name="UrlRoutingHandler" preCondition="integratedMode" verb="*" path=

→˓"UrlRouting.axd" />
</handlers>

</system.webServer>

After configuring your application in IIS you will be able to access the WCF service at: http://hostname/appname/
Service1

152 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

WAS Hosting and Non-HTTP Activation

When hosting WCF Services in WAS (Windows Activation Service), you are not given an opportunity to build your
container in the Application_Start event defined in your Global.asax because WAS doesn’t use the standard
ASP.NET pipeline.

The alternative approach is to place a code file in your App_Code folder that contains a type with a public static
void AppInitialize() method.

namespace MyNamespace
{
public static class AppStart
{
public static void AppInitialize()
{
// Put your container initialization here.

}
}

}

You can read more about AppInitialize() in “How to Initialize Hosted WCF Services”.

Self-Hosting

To use the integration when self-hosting your WCF Service, the key is to use the
AddDependencyInjectionBehavior() extension on your service host. Set up your container with your reg-
istrations, but don’t set the global container. Instead, apply the container to your service host.

ContainerBuilder builder = new ContainerBuilder();
builder.RegisterType<Service1>();

using (var container = builder.Build())
{

Uri address = new Uri("http://localhost:8080/Service1");
ServiceHost host = new ServiceHost(typeof(Service1), address);
host.AddServiceEndpoint(typeof(IEchoService), new BasicHttpBinding(), string.Empty);

// Here's the important part - attaching the DI behavior to the service host
// and passing in the container.
host.AddDependencyInjectionBehavior<IService1>(container);

host.Description.Behaviors.Add(new ServiceMetadataBehavior {HttpGetEnabled = true,␣
→˓HttpGetUrl = address});

host.Open();

Console.WriteLine("The host has been opened.");
Console.ReadLine();

host.Close();
Environment.Exit(0);

}

7.6. Windows Communication Foundation (WCF) 153

https://docs.microsoft.com/en-us/archive/blogs/wenlong/how-to-initialize-hosted-wcf-services

Autofac Documentation, Release 7.0.0

Handling InstanceContextMode.Single Services

Using InstanceContextMode.Single is not a good idea from a scalability point of view, and allowing multiple
callers to access the single instance using ConcurrencyMode.Multiple means that you also need to be careful about
multiple threads accessing any shared state. If possible you should create services with InstanceContextMode.
PerCall.

IIS/WAS Hosted

The AutofacServiceHostFactory identifies WCF services that are marked with InstanceContextMode.Single
and will ensure that the ServiceHost can be provided with a singleton instance from the container. An exception
will be thrown if the service in the container was not registered with the SingleInstance() lifetime scope. It
is also invalid to register a SingleInstance() service in the container for a WCF service that is not marked as
InstanceContextMode.Single.

Self-Hosted

It is possible to manually perform constructor injection for service marked with InstanceContextMode.Single
when self-hosting. This is achieved by resolving a SingleInstance() service from the container and then passing
that into the constructor of a manually created ServiceHost.

// Get the SingleInstance from the container.
var service = container.Resolve<IService1>();
// Pass it into the ServiceHost preventing it from creating an instance with the default␣
→˓constructor.
var host = new ServiceHost(service, new Uri("http://localhost:8080/Service1"));

Simulating a Request Lifetime Scope

As noted earlier, due to WCF internals, there is no explicit support in WCF for per-request lifetime dependencies.

The way Autofac hooks into WCF, it uses an instance provider to resolve your service and dependencies. The instance
provider makes use of the service instance context to track the lifetime scope in which your service and its dependencies
live.

What that boils down to: A lifetime scope is created based on the instance context mode of your service.

If you leave it default, that’s “per session.” One instance of your service will be created when a client calls it, and
subsequent calls from that client will get the same instance.

However, if you want to simulate a per-request lifetime scope, you can:

• Set your service to be instance-per-call using the WCF ServiceBehaviorAttribute.

• Register your service and dependencies to be instance-per-lifetime-scope.

Doing those two things, you’ll get a new lifetime scope for every call (because the WCF instance context will want to
create a new service instance per call). Your service and dependencies will then be resolved as just one time within
that instance context lifetime scope - effectively a per-request lifetime.

Note this can backfire on you if you have dependencies that are shared between your per-call services and your per-
session / single-instance services: In those, you don’t get a new instance of the service for each call, which means the
shared dependencies (registered “instance per lifetime scope”) will also be a singleton for the life of the service. You
may need to experiment and test with dependencies registered as “instance per call” or “instance per lifetime scope” to
get the desired effect.

154 Chapter 7. Application Integration

https://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.iinstanceprovider(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicebehaviorattribute.instancecontextmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicebehaviorattribute.instancecontextmode(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.servicebehaviorattribute.instancecontextmode(v=vs.110).aspx

Autofac Documentation, Release 7.0.0

Using Decorators With Services

The standard Autofac service hosting works well for almost every case, but if you are using decorators on your WCF ser-
vice implementation (not the dependencies, but the actual service implementation) then you need to use the multitenant
WCF service hosting mechanism rather than the standard Autofac service host.

You do not need to use a multitenant container, pass a tenant ID, or use any of the other multitenant options, but you
do need to use the multitenant service host.

The reason for this is that WCF hosting (internal to .NET) requires the host be initialized with a concrete type (not
abstract/interface) and once the type is provided you can’t change it. When using decorators, we don’t actually know
the final type (once you chain together all the decorators, etc.) until you resolve the first instance. . . but that happens
after the host needs the type name. The multitenant hosting mechanism works around this by adding another dynamic
proxy - an empty, target-free concrete class that implements the service interface. When the WCF host needs an
implementation, one of these dynamic proxies gets fired up and the actual implementation (in this case, your decorated
WCF implementation) will be the target.

Again, you only need to do this if you’re decorating the service implementation class itself. If you are only decorat-
ing/adapting dependencies of the service implementation, you do not need the multitenant host. Standard hosting will
work.

Example

The Autofac example repository has a WCF service implementation example as well as an MVC application that acts
as a client for that service.

There are also examples showing a multitenant WCF service and associated client to illustrate how multitenant service
hosting works.

7.7 Service Fabric

The Autofac.ServiceFabric package enables integration of Autofac with Service Fabric services.

• Quick Start

• Per-Request Scopes

• Example

7.7.1 Quick Start

In your Main program method, build up your container and register services using the Autofac extensions. This will
attach service registrations from the container and the ServiceRuntime. Dispose of the container at app shutdown.

using System;
using System.Diagnostics;
using System.Reflection;
using System.Threading;
using Autofac;
using Autofac.Integration.ServiceFabric;

namespace DemoService
(continues on next page)

7.7. Service Fabric 155

https://github.com/autofac/Examples/tree/master/src/WcfExample
https://github.com/autofac/Examples/tree/master/src/MvcExample
https://github.com/autofac/Examples/tree/master/src/MvcExample
https://github.com/autofac/Examples/tree/master/src/MultitenantExample.WcfService
https://github.com/autofac/Examples/tree/master/src/MultitenantExample.MvcApplication
https://www.nuget.org/packages/Autofac.ServiceFabric
https://azure.microsoft.com/en-us/services/service-fabric/

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
public static class Program
{

private static void Main()
{
try
{
// The ServiceManifest.xml file defines one or more service type names.
// Registering a service maps a service type name to a .NET type.
// When Service Fabric creates an instance of this service type,
// an instance of the class is created in this host process.

// Start with the trusty old container builder.
var builder = new ContainerBuilder();

// Register any regular dependencies.
builder.RegisterModule(new LoggerModule(ServiceEventSource.Current.Message));

// Register the Autofac magic for Service Fabric support.
builder.RegisterServiceFabricSupport();

// Register a stateless service...
builder.RegisterStatelessService<DemoStatelessService>(

→˓"DemoStatelessServiceType");

// ...and/or register a stateful service.
// builder.RegisterStatefulService<DemoStatefulService>(

→˓"DemoStatefulServiceType");

using (builder.Build())
{
ServiceEventSource.Current.ServiceTypeRegistered(
Process.GetCurrentProcess().Id,
typeof(DemoStatelessService).Name);

// Prevents this host process from terminating so services keep running.
Thread.Sleep(Timeout.Infinite);

}
}
catch (Exception e)
{
ServiceEventSource.Current.ServiceHostInitializationFailed(e.ToString());
throw;

}
}

}
}

156 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

7.7.2 Per-Request Scopes

It is possible to achieve a “per request” style scoping mechanism by making use of the implicit relationships supported
by Autofac.

For example, if you have a stateless service, its lifetime is effectively a singleton. You would want to use the Func<T>
or Func<Owned<T>> relationships (for non-disposable vs. disposable components, respectively) to inject an auto-
generated factory into your service. Your service could then resolve dependencies as needed.

For example, say you have a user service that is stateless and it needs to read from some backing store that shouldn’t be
a singleton. Assuming the backing store is IDisposable you’d want to use Func<Owned<T>> and inject it like this:

public class UserService: IUserService
{
private readonly Func<Owned<IUserStore>> _userStoreFactory;

public UserService(Func<Owned<IUserStore>> userStoreFactory)
{
_userStoreFactory = userStoreFactory;

}

public async Task<string> GetNameAsync(int id)
{
using (var userStore = _userStoreFactory())
{
return await userStore.Value.GetNameAsync(id);

}
}

}

While there’s no “built in” semantics around per-request handling specifically, you can do a lot with the implicit rela-
tionships so it’s worth becoming familiar with them.

7.7.3 Example

There is an example project showing Service Fabric integration in the Autofac examples repository.

7.8 Managed Extensibility Framework (MEF)

The Autofac MEF integration allows you to expose extensibility points in your applications using the Managed Exten-
sibility Framework.

To use MEF in an Autofac application, you must reference the .NET framework System.ComponentModel.
Composition.dll assembly and get the Autofac.Mef package from NuGet.

Note this is a one-way operation MEF integration allows Autofac to resolve items that were registered in MEF, but it
doesn’t allow MEF to resolve items that were registered in Autofac.

7.8. Managed Extensibility Framework (MEF) 157

https://github.com/autofac/Examples/tree/master/src/ServiceFabricDemo
https://msdn.microsoft.com/en-us/library/dd460648(VS.100).aspx
https://msdn.microsoft.com/en-us/library/dd460648(VS.100).aspx
https://www.nuget.org/packages/Autofac.Mef/

Autofac Documentation, Release 7.0.0

7.8.1 Consuming MEF Extensions in Autofac

The Autofac/MEF integration allows MEF catalogs to be registered with the ContainerBuilder, then use the
RegisterComposablePartCatalog() extension method.

var builder = new ContainerBuilder();
var catalog = new DirectoryCatalog(@"C:\MyExtensions");
builder.RegisterComposablePartCatalog(catalog);

All MEF catalog types are supported:

• TypeCatalog

• AssemblyCatalog

• DirectoryCatalog

Once MEF catalogs are registered, exports within them can be resolved through the Autofac container or by injection
into other components. For example, say you have a class with an export type defined using MEF attributes:

[Export(typeof(IService))]
public class Component : IService { }

Using MEF catalogs, you can register that type. Autofac will find the exported interface and provide the service.

var catalog = new TypeCatalog(typeof(Component));
builder.RegisterComposablePartCatalog(catalog);
var container = builder.Build();

// The resolved IService will be implemented
// by type Component.
var obj = container.Resolve<IService>();

7.8.2 Providing Autofac Components to MEF Extensions

Autofac components aren’t automatically available for MEF extensions to import. Which is to say, if you use Autofac
to resolve a component that was registered using MEF, only other services registered using MEF will be allowed to
satisfy its dependencies.

To provide an Autofac component to MEF, the Exported() extension method must be used:

builder.RegisterType<Component>()
.Exported(x => x.As<IService>().WithMetadata("SomeData", 42));

Again, this is a one-way operation. It allows Autofac to provide dependencies to MEF components that are registered
within Autofac - it doesn’t export Autofac registrations to be resolved from a MEF catalog.

158 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

7.8.3 Using Metadata

Autofac MEF integration adds the Lazy<T, TMetadata> relationship support to the already existing Lazy<T> sup-
port.

For example, say you have an interface defining metadata like this:

public interface IAgeMetadata
{

int Age { get; }
}

You can register Autofac services and use the Lazy<T, TMetadata> relationship by adding the MEF metadata regis-
tration sources:

var builder = new ContainerBuilder();

// This adds the MEF relationship registration sources.
builder.RegisterMetadataRegistrationSources();

builder.RegisterType<Component>()
.WithMetadata<IAgeMetadata>(m => m.For(value => value.Age, 42));

var container = builder.Build();

You can then resolve a Lazy<T, TMetadata> from that:

using (var scope = container.BeginLifetimeScope())
{
var lazy = scope.Resolve<Lazy<Component, IAgeMetadata>>();

// lazy.Metadata.Age == 42
}

KNOWN ISSUE: If you have a MEF [Imports] over a Lazy<T, TMetadata> value, the object T is not lazy in-
stantiated at this time. There is an issue filed for this on the Autofac.Mef repo. If you’re looking to help, we’d love a
PR for it!

7.8.4 Known Issues / Gotchas

• MEF integration with Autofac is one-way. It does not allow MEF composition containers access to things
registered in Autofac. Instead, it basically takes MEF registration semantics and helps populate an Autofac
container. You are expected to resolve things from Autofac after that, not from a MEF container.

• Lazy metadata imports don’t work. If you have a MEF [Imports] over a Lazy<T, TMetadata> value, the
object T is not lazy instantiated at this time. There is an issue filed for this on the Autofac.Mef repo.

• Open generic exports are not supported. If you have an attribute like [Export(typeof(A<>)) on a MEF
component, Autofac will not properly handle that export and resolving objects of that type will fail. There is an
issue `There is an issue filed for this on the Autofac.Mef repo.

7.8. Managed Extensibility Framework (MEF) 159

https://github.com/autofac/Autofac.Mef/issues/1
https://github.com/autofac/Autofac.Mef/issues/1
https://github.com/autofac/Autofac.Mef/issues/4
https://github.com/autofac/Autofac.Mef/issues/4

Autofac Documentation, Release 7.0.0

7.9 Common Service Locator

The Autofac.Extras.CommonServiceLocator package allows you to use Autofac as the backing store for services in
places where you require Microsoft Common Service Locator integration.

To use the Common Service Locator integration, build your Autofac container as normal, then simply set the current
service locator to an AutofacServiceLocator.

var builder = new ContainerBuilder();

// Perform registrations and build the container.
var container = builder.Build();

// Set the service locator to an AutofacServiceLocator.
var csl = new AutofacServiceLocator(container);
ServiceLocator.SetLocatorProvider(() => csl);

7.10 Moq

The Moq integration package allows you to automatically create mock dependencies for both concrete and mock abstract
instances in unit tests using an Autofac container. You can get the Autofac.Extras.Moq package on NuGet.

7.10.1 Getting Started

Given you have a system under test and a dependency:

public class SystemUnderTest
{
public SystemUnderTest(IDependency dependency)
{
}

}

public interface IDependency
{
}

When writing your unit test, use the Autofac.Extras.Moq.AutoMock class to instantiate the system under test. Doing
this will automatically inject a mock dependency into the constructor for you. At the time you create the AutoMock
factory, you can specify default mock behavior:

• AutoMock.GetLoose() - creates automatic mocks using loose mocking behavior.

• AutoMock.GetStrict() - creates automatic mocks using strict mocking behavior.

• AutoMock.GetFromRepository(repo) - creates mocks based on an existing configured repository.

[Test]
public void Test()
{
using (var mock = AutoMock.GetLoose())
{

(continues on next page)

160 Chapter 7. Application Integration

https://www.nuget.org/packages/Autofac.Extras.CommonServiceLocator/
https://www.nuget.org/packages/CommonServiceLocator/
https://github.com/Moq/moq4
https://www.nuget.org/packages/Autofac.Extras.Moq

Autofac Documentation, Release 7.0.0

(continued from previous page)

// The AutoMock class will inject a mock IDependency
// into the SystemUnderTest constructor
var sut = mock.Create<SystemUnderTest>();

}
}

7.10.2 Configuring Mocks

You can configure the automatic mocks and/or assert calls on them as you would normally with Moq.

[Test]
public void Test()
{
using (var mock = AutoMock.GetLoose())
{
// Arrange - configure the mock
mock.Mock<IDependency>().Setup(x => x.GetValue()).Returns("expected value");
var sut = mock.Create<SystemUnderTest>();

// Act
var actual = sut.DoWork();

// Assert - assert on the mock
mock.Mock<IDependency>().Verify(x => x.GetValue());
Assert.AreEqual("expected value", actual);

}
}

public class SystemUnderTest
{
private readonly IDependency dependency;

public SystemUnderTest(IDependency strings)
{
this.dependency = strings;

}

public string DoWork()
{
return this.dependency.GetValue();

}
}

public interface IDependency
{
string GetValue();

}

7.10. Moq 161

Autofac Documentation, Release 7.0.0

7.10.3 Configuring Specific Dependencies

You can configure the AutoMock to provide a specific instance for a given service type (or apply any other registration
behavior), by using the beforeBuild callback argument to GetLoose, GetStrict or GetFromRepository, in a
similar manner to configuring a new Lifetime Scope:

[Test]
public void Test()
{
var dependency = new Dependency();
using (var mock = AutoMock.GetLoose(cfg => cfg.RegisterInstance(dependency).As

→˓<IDependency>()))
{
// Returns your registered instance.
var dep = mock.Create<IDependency>();

// If SystemUnderTest depends on IDependency, it will get your dependency instance.
var underTest = mock.Create<SystemUnderTest>();

// ...and the rest of the test.
}

}

The cfg argument passed to your callback is a regular Autofac ContainerBuilder instance, so you can do any of the
registration behavior you’re used to in a normal set up.

You can also configure the AutoMock to use any existing mock, through the RegisterMock extension method:

[Test]
public void Test()
{
var mockA = new Mock<IServiceA>();
mockA.Setup(x => x.RunA());

// mockA is automatically registered as providing IServiceA
using (var mock = AutoMock.GetLoose(cfg => cfg.RegisterMock(mockA)))
{
// mockA will be injected into TestComponent as IServiceA
var component = mock.Create<TestComponent>();

// ...and the rest of the test
}

}

162 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

7.11 FakeItEasy

The FakeItEasy integration package allows you to automatically create fake dependencies for both concrete and fake
abstract instances in unit tests using an Autofac container.

Array types, IEnumerable<T> types, and concrete types will be created via the underlying container, which is auto-
matically configured with the AnyConcreteTypeNotAlreadyRegisteredSource, while other interfaces and abstract classes
will be created as FakeItEasy Fakes.

You can get the Autofac.Extras.FakeItEasy package on NuGet.

7.11.1 Getting Started

Given you have a system under test and a dependency:

public class SystemUnderTest
{
public SystemUnderTest(IDependency dependency)
{
}

}

public interface IDependency
{
}

When writing your unit test, use the Autofac.Extras.FakeItEasy.AutoFake class to instantiate the system under
test. Doing this will automatically inject a fake dependency into the constructor for you.

[Test]
public void Test()
{
using (var fake = new AutoFake())
{
// The AutoFake class will inject a fake IDependency
// into the SystemUnderTest constructor
var sut = fake.Resolve<SystemUnderTest>();

}
}

7.11.2 Configuring Fakes

You can configure the automatic fakes and/or assert calls on them as you would normally with FakeItEasy.

[Test]
public void Test()
{
using (var fake = new AutoFake())
{
// Arrange - configure the fake
A.CallTo(() => fake.Resolve<IDependency>().GetValue()).Returns("expected value");
var sut = fake.Resolve<SystemUnderTest>();

(continues on next page)

7.11. FakeItEasy 163

https://fakeiteasy.github.io
https://nuget.org/packages/Autofac.Extras.FakeItEasy

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Act
var actual = sut.DoWork();

// Assert - assert on the fake
A.CallTo(() => fake.Resolve<IDependency>().GetValue()).MustHaveHappened();
Assert.AreEqual("expected value", actual);

}
}

public class SystemUnderTest
{
private readonly IDependency dependency;

public SystemUnderTest(IDependency strings)
{
this.dependency = strings;

}

public string DoWork()
{
return this.dependency.GetValue();

}
}

public interface IDependency
{
string GetValue();

}

7.11.3 Configuring Specific Dependencies

You can configure the AutoFake to provide a specific instance for a given service type:

[Test]
public void Test()
{
using (var fake = new AutoFake())
{
var dependency = new Dependency();
fake.Provide(dependency);

// ...and the rest of the test.
}

}

You can also configure the AutoFake to provide a specific implementation type for a given service type:

[Test]
public void Test()
{

(continues on next page)

164 Chapter 7. Application Integration

Autofac Documentation, Release 7.0.0

(continued from previous page)

using (var fake = new AutoFake())
{
// Configure a component type that doesn't require
// constructor parameters.
fake.Provide<IDependency, Dependency>();

// Configure a component type that has some
// constructor parameters passed in. Use Autofac
// parameters in the list.
fake.Provide<IOtherDependency, OtherDependency>(

new NamedParameter("id", "service-identifier"),
new TypedParameter(typeof(Guid), Guid.NewGuid()));

// ...and the rest of the test.
}

}

7.11.4 Options for Fakes

You can specify options for fake creation using optional constructor parameters on AutoFake:

using(var fake = new AutoFake(
// Create fakes with strict behavior (unconfigured calls throw exceptions)
strict: true,

// Calls to fakes of abstract types will call the base methods on the abstract types
callsBaseMethods: true,

// Provide an action to perform upon the creation of each fake
onFakeCreated: f => { ... }))

{
// Use the fakes/run the test.

}

Be careful when mixing these options. It makes no sense to specify callsBaseMethods with any other options,
as it will override them. When both onFakeCreated and strict are specified, the configuration supplied to
onFakeCreated will override strict, as applicable.

7.11. FakeItEasy 165

Autofac Documentation, Release 7.0.0

166 Chapter 7. Application Integration

CHAPTER

EIGHT

BEST PRACTICES AND RECOMMENDATIONS

You can always ask for Autofac usage guidance on StackOverflow using the autofac tag or in the discussion group,
but these quick tips can help get you going.

8.1 Always Resolve Dependencies from Nested Lifetimes

Autofac is designed to track and dispose of resources for you. To ensure this happens, make sure that long-running
applications are partitioned into units of work (requests or transactions) and that services are resolved through unit of
work level lifetime scopes. The per-request lifetime scope support in ASP.NET is an example of this technique.

8.2 Structure Configuration with Modules

Autofac modules give structure to container configuration and allow deployment-time settings to be injected. Rather
than using XML configuration alone, consider modules for a more flexible approach. Modules can always be combined
with XML configuration for a best-of-both-worlds experience.

8.3 Use As<T>() in Delegate Registrations

Autofac infers implementation type from the expressions you use to register components:

builder.Register(c => new Component()).As<IComponent>();

. . .makes the type Component the LimitType of the component. These other type casting mechanisms are equivalent
but don’t provide the correct LimitType:

// Works, but avoid this
builder.Register(c => (IComponent)new Component());

// Works, but avoid this
builder.Register<IComponent>(c => new Component());

167

https://stackoverflow.com/questions/tagged/autofac
https://groups.google.com/forum/#forum/autofac

Autofac Documentation, Release 7.0.0

8.4 Use Constructor Injection

The concept of using constructor injection for required dependencies and property injection for optional dependen-
cies is quite well known. An alternative, however, is to use the “Null Object” or “Special Case” pattern to provide
default, do-nothing implementations for the optional service. This prevents the possibility of special-case code in the
implementation of the component (e.g. if (Logger != null) Logger.Log("message");).

8.5 Use Relationship Types, Not Service Locators

Giving components access to the container, storing it in a public static property, or making functions like Resolve()
available on a global “IoC” class defeats the purpose of using dependency injection. Such designs have more in common
with the Service Locator pattern.

If components have a dependency on the container (or on a lifetime scope), look at how they’re using the container to
retrieve services, and add those services to the component’s (dependency injected) constructor arguments instead.

Use relationship types for components that need to instantiate other components or interact with the container in more
advanced ways.

8.6 Register Components from Least-to-Most Specific

Autofac overrides component registrations by default. This means that an application can register all of its default
components, then read an associated configuration file to override any that have been customized for the deployment
environment.

8.7 Use Profilers for Performance Checking

Before doing any performance optimization or making assumptions about potential memory leaks, always run a pro-
filer like SlimTune, dotTrace, or ANTS to see where time is truly being spent. It might not be where you think.

8.8 Register Once, Resolve Many

Don’t register components during units of work if you can avoid it; it is more expensive to register a component than
resolve one. Use nested lifetime scopes and appropriate instance scopes to keep per-unit-of-work instances separate.

8.9 Register Frequently-Used Components with Lambdas

If you do need to squeeze extra performance out of Autofac, your best bet is to identify the most frequently-created
components and register them using an expression rather than by type, e.g.:

builder.RegisterType<Component>();

Becomes:

builder.Register(c => new Component());

168 Chapter 8. Best Practices and Recommendations

http://en.wikipedia.org/wiki/Null_Object_pattern
http://martinfowler.com/eaaCatalog/specialCase.html
http://martinfowler.com/articles/injection.html#UsingAServiceLocator
http://code.google.com/p/slimtune/
http://www.jetbrains.com/profiler/
http://www.red-gate.com/products/dotnet-development/ants-performance-profiler/

Autofac Documentation, Release 7.0.0

This can yield an improvement of up to 10x faster Resolve() calls, but only makes sense for components that appear
in many object graphs. See the registration documentation for more on lambda components.

8.10 Consider a Container as Immutable

Starting from Autofac 5.x the container is immutable. There are several potential risks associated with updating a
container after it has been built. Some examples include:

• Auto-start components will have already run and potentially used registrations you’ve overridden during update.
These auto-start components will not re-run.

• Services that have already been resolved may have references to incorrect dependencies based on the additions
made.

• Disposable components may have already been resolved and will stick around until their owning lifetime scope
is disposed - even if the new registrations would imply the disposable component shouldn’t be used.

• Component registrations that subscribe to lifetime events may be subscribed to the wrong events after the update
- events don’t all get re-initialized during update.

In order to prevent any of these risks from becoming a problem, it is no longer an option to update the container after
construction.

Instead of updating the container, consider registering updates or changes in a child lifetime scope. There are
examples of this in the lifetime scope documentation.

8.11 Optimize or Avoid Diagnostics

The System.Diagnostics.DiagnosticSource diagnostics integration is reasonably performant, but tracers at-
tached may affect overall performance. For example, any tracer (e.g., DefaultDiagnosticTracer) that tracks full
resolve operation chains will be allocating memory and using resources to keep the operation data until the full resolve
operation is complete.

The overall performance will be better if you don’t have any listeners for diagnostics, but if you do, consider using
diagnostics listeners that are very fast and low allocation. For example, no additional memory or tracking needs to
happen to log a message when an operation occurs. That might be lower overhead than a listener that builds a robust
trace before completing.

8.10. Consider a Container as Immutable 169

Autofac Documentation, Release 7.0.0

170 Chapter 8. Best Practices and Recommendations

CHAPTER

NINE

ADVANCED TOPICS

9.1 Registration Sources

A registration source is a way to dynamically feed registrations into an Autofac component context (e.g., container or
lifetime scope).

Registration sources are created by implementing the IRegistrationSource interface. Many of the Autofac features
are implemented this way - for example, the implicit relationship types are added via registration sources. (You didn’t
think we actually registered every single type of collection manually into the container, did you?) Nick Blumhardt has
a great blog article about how this works.

Registration sources are great when you don’t have a finite set of registrations you can add to a container. Many times,
assembly scanning and/or use of modules can address dynamic registration concerns. . . but when all else fails or those
means don’t accomplish what you’re looking to do, a registration source may be the way to go.

9.1.1 “Any Concrete Type Not Already Registered” Source

The AnyConcreteTypeNotAlreadyRegisteredSource, or “ACTNARS” as we call it, is an example of a registration
source that Autofac ships with that allows you to resolve any concrete type from the Autofac container regardless of
whether or not you specifically registered it. People moving from other inversion-of-control containers may be used to
this sort of behavior, so ACTNARS is a way to bridge that gap.

You can use the Autofac.Features.ResolveAnything.AnyConcreteTypeNotAlreadyRegisteredSource by
adding it to your container.

var builder = new ContainerBuilder();
builder.RegisterSource(new AnyConcreteTypeNotAlreadyRegisteredSource());
var container = builder.Build();

9.1.2 Contravariant Registration Source

The ContravariantRegistrationSource is helpful in registering types that need to be later resolved in a con-
travariant context (using a more generic / less derived type than originally specified).

If you use this source, register it before registering other things. Just as with standard registrations, registration
sources are evaluated in the order of registration. If you register an open generic (which is also a registration source
under the covers) and then register ContravariantRegistrationSource, you will not get the outcome you expect.

Using ContravariantRegistrationSource is common in handler patterns:

171

http://nblumhardt.com/2010/01/declarative-context-adapters-autofac2/
http://nblumhardt.com/2010/01/declarative-context-adapters-autofac2/
https://docs.microsoft.com/en-us/dotnet/standard/generics/covariance-and-contravariance
https://docs.microsoft.com/en-us/dotnet/standard/generics/covariance-and-contravariance

Autofac Documentation, Release 7.0.0

public interface IHandler<in TCommand>
{
void Handle(TCommand command);

}

public class BaseCommandHandler : IHandler<BaseCommand>
{
public void Handle(BaseCommand command)
{

Console.WriteLine(command.GetType().Name);
}

}

public class BaseCommand
{
}

public class DerivedCommand : BaseCommand
{
}

var builder = new ContainerBuilder();

// Register this BEFORE registering other things!
builder.RegisterSource(new ContravariantRegistrationSource());
builder.RegisterType<BaseCommandHandler>().As<IHandler<BaseCommand>>();

var container = builder.Build();

// a and b are both BaseCommandHandler.
var a = container.Resolve<IHandler<BaseCommand>>();
a.Handle(new BaseCommand()); // prints BaseCommand
var b = container.Resolve<IHandler<DerivedCommand>>();
b.Handle(new DerivedCommand()); // prints DerivedCommand

9.1.3 Implementing a Registration Source

The best way to show how to implement a registration source is through a simple example.

Let’s say you have a factory that is responsible for generating some sort of event handler class. You need to generate
them through the factory rather than through Autofac, so you don’t have the handlers themselves registered with Autofac.
At the same time, there’s not a good way to say “when a person asks for any event handler, generate it through this
special factory.” This is a great example of where a registration source can come in handy.

For the example, let’s define a simple event handler base/abstract class and a couple of implementations.

public abstract class BaseHandler
{
public virtual string Handle(string message)
{
return "Handled: " + message;

}
(continues on next page)

172 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

}

public class HandlerA : BaseHandler
{
public override string Handle(string message)
{
return "[A] " + base.Handle(message);

}
}

public class HandlerB : BaseHandler
{
public override string Handle(string message)
{
return "[B] " + base.Handle(message);

}
}

Now let’s create a factory interface and implementation.

public interface IHandlerFactory
{
T GetHandler<T>() where T : BaseHandler;

}

public class HandlerFactory : IHandlerFactory
{
public T GetHandler<T>() where T : BaseHandler
{
return (T)Activator.CreateInstance(typeof(T));

}
}

Finally, let’s create a couple of consuming classes that use the handlers.

public class ConsumerA
{
private HandlerA _handler;
public ConsumerA(HandlerA handler)
{
this._handler = handler;

}

public void DoWork()
{
Console.WriteLine(this._handler.Handle("ConsumerA"));

}
}

public class ConsumerB
{

(continues on next page)

9.1. Registration Sources 173

Autofac Documentation, Release 7.0.0

(continued from previous page)

private HandlerB _handler;
public ConsumerB(HandlerB handler)
{
this._handler = handler;

}

public void DoWork()
{
Console.WriteLine(this._handler.Handle("ConsumerB"));

}
}

Now that we have the services and the consumers, let’s make a registration source. In the example source, we’ll. . .

1. Determine if the resolve operation is asking for a BaseHandler type or not. If it’s not, the source won’t provide
any registration to satisfy the resolve request.

2. Build up the dynamic registration for the specific type of BaseHandler derivative being requested, which will
include the lambda that invokes the provider/factory to get the instance.

3. Return the dynamic registration to the resolve operation so it can do the work.

Here’s the code for the registration source.

using Autofac;
using Autofac.Core;
using Autofac.Core.Activators.Delegate;
using Autofac.Core.Lifetime;
using Autofac.Core.Registration;

public class HandlerRegistrationSource : IRegistrationSource
{
public IEnumerable<IComponentRegistration> RegistrationsFor(
Service service,
Func<Service, IEnumerable<ServiceRegistration>> registrationAccessor)

{
var swt = service as IServiceWithType;
if(swt == null || !typeof(BaseHandler).IsAssignableFrom(swt.ServiceType))
{
// It's not a request for the base handler type, so skip it.
return Enumerable.Empty<IComponentRegistration>();

}

// This is where the magic happens!
var registration = new ComponentRegistration(

Guid.NewGuid(),
new DelegateActivator(swt.ServiceType, (c, p) =>
{
// In this example, the factory itself is assumed to be registered
// with Autofac, so we can resolve the factory. If you want to hard
// code the factory here, you can do that, too.
var provider = c.Resolve<IHandlerFactory>();

// Our factory interface is generic, so we have to use a bit of
(continues on next page)

174 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

// reflection to make the call.
var method = provider.GetType().GetMethod("GetHandler").MakeGenericMethod(swt.

→˓ServiceType);

// In the end, return the object from the factory.
return method.Invoke(provider, null);

}),
new CurrentScopeLifetime(),
InstanceSharing.None,
InstanceOwnership.OwnedByLifetimeScope,
new [] { service },
new Dictionary<string, object>());

return new IComponentRegistration[] { registration };
}

public bool IsAdapterForIndividualComponents { get{ return false; } }
}

The last step is to register everything with Autofac - the registration source, the factory, and the consuming classes.
Notice, though, that we don’t have to register the actual handlers themselves because the registration source takes care
of that.

var builder = new ContainerBuilder();
builder.RegisterType<HandlerFactory>().As<IHandlerFactory>();
builder.RegisterSource(new HandlerRegistrationSource());
builder.RegisterType<ConsumerA>();
builder.RegisterType<ConsumerB>();
var container = builder.Build();

Now when you resolve one of your handler consumers, you’ll get the correct handler.

using(var scope = container.BeginLifetimeScope())
{
var consumer = scope.Resolve<ConsumerA>();

// Calling this will yield the following output on the console:
// [A] Handled: ConsumerA
consumer.DoWork();

}

9.2 Adapters and Decorators

9.2.1 Adapters

The adapter pattern takes one service contract and adapts it (like a wrapper) to another.

This introductory article describes a concrete example of the adapter pattern and how you can work with it in Autofac.

Autofac provides built-in adapter registration so you can register a set of services and have them each automatically
adapted to a different interface.

9.2. Adapters and Decorators 175

http://en.wikipedia.org/wiki/Adapter_pattern
http://nblumhardt.com/2010/04/lightweight-adaptation-coming-soon/

Autofac Documentation, Release 7.0.0

var builder = new ContainerBuilder();

// Register the services to be adapted
builder.RegisterType<SaveCommand>()

.As<ICommand>()

.WithMetadata("Name", "Save File");
builder.RegisterType<OpenCommand>()

.As<ICommand>()

.WithMetadata("Name", "Open File");

// Then register the adapter. In this case, the ICommand
// registrations are using some metadata, so we're
// adapting Meta<ICommand> instead of plain ICommand.
builder.RegisterAdapter<Meta<ICommand>, ToolbarButton>(

cmd => new ToolbarButton(cmd.Value, (string)cmd.Metadata["Name"]));

var container = builder.Build();

// The resolved set of buttons will have two buttons
// in it - one button adapted for each of the registered
// ICommand instances.
var buttons = container.Resolve<IEnumerable<ToolbarButton>>();

9.2.2 Decorators

The decorator pattern is somewhat similar to the adapter pattern, where one service “wraps” another. However, in
contrast to adapters, decorators expose the same service as what they’re decorating. The point of using decorators is to
add functionality to an object without changing the object’s signature.

Autofac provides built-in decorator registration so you can register services and have them automatically wrapped with
decorator classes.

Simplified Syntax

Autofac 4.9.0 came with a simplified decorator syntax that can be used as an alternative to the classic syntax (below).
It is easier to use and has a bit more flexibility than the earlier mechanism.

var builder = new ContainerBuilder();

// Register the services to be decorated.
builder.RegisterType<SaveCommandHandler>()

.As<ICommandHandler>();
builder.RegisterType<OpenCommandHandler>()

.As<ICommandHandler>();

// Then register the decorator. You can register multiple
// decorators and they'll be applied in the order that you
// register them. In this example, all ICommandHandlers
// will be decorated with logging and diagnostics decorators.
builder.RegisterDecorator<LoggingDecorator, ICommandHandler>();
builder.RegisterDecorator<DiagnosticDecorator, ICommandHandler>();

(continues on next page)

176 Chapter 9. Advanced Topics

http://en.wikipedia.org/wiki/Decorator_pattern
https://alexmg.com/posts/upcoming-decorator-enhancements-in-autofac-4-9

Autofac Documentation, Release 7.0.0

(continued from previous page)

var container = builder.Build();

// The resolved set of commands will have two items
// in it, both of which will be wrapped in the decorators.
var handlers = container.Resolve<IEnumerable<ICommandHandler>>();

If you don’t know the type up front, you can manually specify instead of using the generic:

builder.RegisterDecorator(typeof(LoggingDecorator), typeof(ICommandHandler));
builder.RegisterDecorator(typeof(DiagnosticDecorator), typeof(ICommandHandler));

If you want to manually instantiate your decorators or do more complex decorator creation, that’s also possible.

builder.RegisterDecorator<ICommandHandler>(
(context, parameters, instance) => new ComplexDecorator(instance)

);

In the lambda, context is the IComponentContext in which the resolution is happening (so you could resolve other
things if needed); parameters is an IEnumerable<Parameter> with all the parameters passed in; and instance is
the service instance being decorated. Keep in mind that if you have multiple decorators being chained, instance may
be a decorator instance rather than the root/base thing being decorated.

Decoration is supported on open generics.

var builder = new ContainerBuilder();

// Register the open generic to be decorated.
builder.RegisterGeneric(typeof(CommandHandler<>)

.As(ICommandHandler<>);

// Then register the decorator. You can register multiple
// decorators and they'll be applied in the order that you
// register them. In this example, all ICommandHandler<T> instances
// will be decorated with logging and diagnostics decorators.
builder.RegisterGenericDecorator(typeof(LoggingDecorator<>), typeof(ICommandHandler<>));
builder.RegisterGenericDecorator(typeof(DiagnosticDecorator<>), typeof(ICommandHandler<>
→˓));

var container = builder.Build();

// The resolved handler will be wrapped in both decorators.
var handler = container.Resolve<ICommandHandler<Save>>();

Decoration can be conditional. A context object is provided to registrations that allows you to decide whether or not to
apply the decorator:

// Only add the error handler decorator to the command handler if
// there are no other decorators applied.
builder.RegisterDecorator<ErrorHandlerDecorator, ICommandHandler>(
context => !context.AppliedDecorators.Any());

builder.RegisterGenericDecorator(
typeof(ErrorHandlerDecorator<>),

(continues on next page)

9.2. Adapters and Decorators 177

Autofac Documentation, Release 7.0.0

(continued from previous page)

typeof(ICommandHandler<>),
context => !context.AppliedDecorators.Any());

The context in those lambdas is an IDecoratorContext with information about the list of applied decorators, the
actual service type being resolved, and more.

You can use that context to make decisions in your decorators if you want. It can be injected into your decorator as a
constructor parameter.

public class ErrorHandlerDecorator : ICommandHandler
{
private readonly ICommandHandler _decorated;
private readonly IDecoratorContext _context;

public ErrorHandlerDecorator(ICommandHandler decorated, IDecoratorContext context)
{
this._decorated = decorated ?? throw new ArgumentNullException(nameof(decorated));
this._context = context ?? throw new ArgumentNullException(nameof(context));

}

public void HandleCommand(Command command)
{
if(this._context.ImplementationType.GetCustomAttribute<SkipHandlingAttribute>() !=␣

→˓null)
{
// run the command without handling the errors

}
else
{
// add the special error handling logic

}
}

}

You cannot specify a lifetime scope on a decorator. The lifetime of a decorator is tied to the lifetime of the thing it
decorates. The service and all decorators get disposed at the same time. If you decorate a singleton, all the decorators
are also going to be singletons. If you decorate something that’s instance per request (e.g., in a web app) the decorators
will also live for the whole request.

Classic Syntax

The “classic syntax” has been around since Autofac 2.4 and still works today. It’s more complicated than the newer
syntax but if you have some existing code that uses it, that code will continue to work.

This article has some details about how decorators work in Autofac.

var builder = new ContainerBuilder();

// Register the services to be decorated. You have to
// name them rather than register them As<ICommandHandler>()
// so the *decorator* can be the As<ICommandHandler>() registration.
builder.RegisterType<SaveCommandHandler>()

.Named<ICommandHandler>("handler");
(continues on next page)

178 Chapter 9. Advanced Topics

http://nblumhardt.com/2011/01/decorator-support-in-autofac-2-4/

Autofac Documentation, Release 7.0.0

(continued from previous page)

builder.RegisterType<OpenCommandHandler>()
.Named<ICommandHandler>("handler");

// Then register the decorator. The decorator uses the
// named registrations to get the items to wrap.
builder.RegisterDecorator<ICommandHandler>(

(c, inner) => new CommandHandlerDecorator(inner),
fromKey: "handler");

var container = builder.Build();

// The resolved set of commands will have two items
// in it, both of which will be wrapped in a CommandHandlerDecorator.
var handlers = container.Resolve<IEnumerable<ICommandHandler>>();

You can also use open generic decorator registrations.

var builder = new ContainerBuilder();

// Register the open generic with a name so the
// decorator can use it.
builder.RegisterGeneric(typeof(CommandHandler<>))

.Named("handler", typeof(ICommandHandler<>));

// Register the generic decorator so it can wrap
// the resolved named generics.
builder.RegisterGenericDecorator(

typeof(CommandHandlerDecorator<>),
typeof(ICommandHandler<>),
fromKey: "handler");

var container = builder.Build();

// You can then resolve closed generics and they'll be
// wrapped with your decorator.
var mailHandlers = container.Resolve<IEnumerable<ICommandHandler<EmailCommand>>>();

If you are using decorators on a WCF service implementation class, there is some additional information on the WCF
integration page about some special considerations.

9.3 Composites

The composite pattern allows a collection of objects to be treated in the same way as a single instance of that same type
of object.

In Autofac 6.0, we added support for expressing the composite pattern for services in your container that have multiple
implementations, but should be exposed through a single wrapper class.

You can register a composite wrapper registration for a service, that will be returned when a consuming class resolves
that service, and can take a collection of the same service as a constructor parameter.

This functionality is particularly useful if you find yourself needing to add a provider for a service, but you don’t want
the consuming code of the original provider to a) have to change, or b) know that there are multiple providers.

9.3. Composites 179

https://en.wikipedia.org/wiki/Composite_pattern

Autofac Documentation, Release 7.0.0

// This is my service with multiple registrations.
public interface ILogSink
{

void WriteLog(string log);
}

// A composite wrapper is just a regular class that injects a collection of the same␣
→˓service.
public class CompositeLogSink : ILogSink
{

private readonly IEnumerable<ILogSink> _implementations;

public CompositeLogSink(IEnumerable<ILogSink> implementations)
{

_implementations = implementations;
}

public void WriteLog(string log)
{

foreach (var sink in _implementations)
{

sink.WriteLog(log);
}

}
}

//

var builder = new ContainerBuilder();

builder.RegisterType<FileLogSink>().As<ILogSink>();
builder.RegisterType<DbLogSink>().As<ILogSink>();

// Register a composite wrapper for ILogSink.
builder.RegisterComposite<CompositeLogSink, ILogSink>();

var container = builder.Build();

// This will return the composite wrapper, with the two registrations injected.
var logSink = container.Resolve<ILogSink>();

logSink.WriteLog("log message");

If you don’t know the type up front, you can manually specify instead of using the generic:

builder.RegisterComposite(typeof(CompositeLogSink), typeof(ILogSink));

For more complex composite creation, you can also specify a lambda for your composite registration:

builder.RegisterComposite<ILogSink>((context, parameters, implementations) => new␣
→˓CompositeLogSink(implementations));

In the lambda, context is the IComponentContext in which the resolution is happening (so you could resolve
other things if needed), parameters is an IEnumerable<Parameter> with all the parameters passed in, and

180 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

implementations is an IEnumerable of all the implementations of the service.

It is also possible to register open generic composites:

// Generic providers...
builder.RegisterGeneric(typeof(FileLogSink<>)).As(typeof(ILogSink<>));
builder.RegisterGeneric(typeof(DbLogSink<>)).As(typeof(ILogSink<>));

// ...with a generic composite.
builder.RegisterGenericComposite(typeof(CompositeLogSink<>), typeof(ILogSink<>));

var container = builder.Build();

// Will return a composite of FileLogSink<HttpClient> and DbLogSink<HttpClient>.
var sink = container.Resolve<ILogSink<HttpClient>>();

Composite wrappers can have their own additional dependencies, as well as use any combination of the implicit rela-
tionships on the set of implementations passed in:

public class CompositeWrapper : ILogSink
{

public CompositeWrapper(IEnumerable<ILogSink> implementations, IAnotherService␣
→˓service)

{
}

}

public class LazyCompositeWrapper : ILogSink
{

// Lazy loading for the set of composites.
public LazyCompositeWrapper(Lazy<IEnumerable<ILogSink>> implementations)
{
}

}

public class MetaCompositeWrapper : ILogSink
{

// Access the metadata of each implementation.
public LazyCompositeWrapper(IEnumerable<Meta<ILogSink>> implementations)
{
}

}

9.3.1 Metadata

Composite registrations can have their own metadata, much like a normal registration; however they do not expose any
metadata of the individual registrations they wrap:

// Register a composite wrapper for ILogSink:
builder.RegisterComposite<CompositeLogSink, ILogSink>()

.WithMetadata("key", "value");

var container = builder.Build();
(continues on next page)

9.3. Composites 181

Autofac Documentation, Release 7.0.0

(continued from previous page)

// This will return the composite wrapper and expose the metadata.
var logSink = container.Resolve<Meta<ILogSink>>();

9.3.2 Lifetime

Composite wrappers can have their own lifetime, much like any other registration. However, you should consider the
implications of making composite registrations long-living; a SingleInstance composite would ignore any additional
registrations for the wrapped service made in nested lifetime scopes (for example).

9.3.3 Decorators

When using the composite pattern, decorators are only applied to the individual implementations, and not to the
composite itself.

So, if you register a decorator for ILogSink, and have a composite registration with implementations FileLogSink
and DbLogSink, when you resolve ILogSink FileLogSink and DbLogSink will be decorated, but your composite
wrapper will not be decorated.

9.3.4 Composites and Collections

Composite registrations are never returned when resolving a collection of implementations, even outside of a composite
wrapper:

var builder = new ContainerBuilder();

builder.RegisterType<FileLogSink>().As<ILogSink>();
builder.RegisterType<DbLogSink>().As<ILogSink>();

// Register a composite wrapper for ILogSink:
builder.RegisterComposite<CompositeLogSink, ILogSink>();

var container = builder.Build();

// This will return 2 items only (the actual implementations).
var logSinks = container.Resolve<IEnumerable<ILogSink>>();

9.4 Circular Dependencies

Circular dependencies are mutual runtime dependencies between components.

182 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

9.4.1 Property/Property Dependencies

This is when you have one class (DependsByProperty1) that takes a property dependency of a second type
(DependsByProperty2), and the second type (DependsByProperty2) has a property dependency of the first type
(DependsByProperty1).

If you have this situation, there are some important things to remember:

• Make the property dependencies settable. The properties must be writeable.

• Register the types using PropertiesAutowired. Be sure to set the behavior to allow circular dependencies.

• Neither type can be registered as InstancePerDependency. If either type is set to factory scope you won’t
get the results you’re looking for (where the two types refer to each other). You can scope them however you like
- SingleInstance, InstancePerLifetimeScope, or any other scope - just not factory.

Example:

class DependsByProp1
{
public DependsByProp2 Dependency { get; set; }

}

class DependsByProp2
{
public DependsByProp1 Dependency { get; set; }

}

// ...

var cb = new ContainerBuilder();
cb.RegisterType<DependsByProp1>()
.InstancePerLifetimeScope()
.PropertiesAutowired(PropertyWiringOptions.AllowCircularDependencies);

cb.RegisterType<DependsByProp2>()
.InstancePerLifetimeScope()
.PropertiesAutowired(PropertyWiringOptions.AllowCircularDependencies);

9.4.2 Constructor/Property Dependencies

This is when you have one class (DependsByCtor) that takes a constructor dependency of a second type
(DependsByProperty), and the second type (DependsByProperty) has a property dependency of the first type
(DependsByCtor).

If you have this situation, there are some important things to remember:

• Make the property dependency settable. The property on the type with the property dependency must be
writeable.

• Register the type with the property dependency using PropertiesAutowired. Be sure to set the behavior
to allow circular dependencies.

• Neither type can be registered as InstancePerDependency. If either type is set to factory scope you won’t
get the results you’re looking for (where the two types refer to each other). You can scope them however you like
- SingleInstance, InstancePerLifetimeScope, or any other scope - just not factory.

Example:

9.4. Circular Dependencies 183

Autofac Documentation, Release 7.0.0

class DependsByCtor
{
public DependsByCtor(DependsByProp dependency) { }

}

class DependsByProp
{
public DependsByCtor Dependency { get; set; }

}

// ...

var cb = new ContainerBuilder();
cb.RegisterType<DependsByCtor>()
.InstancePerLifetimeScope();

cb.RegisterType<DependsByProp>()
.InstancePerLifetimeScope()
.PropertiesAutowired(PropertyWiringOptions.AllowCircularDependencies);

9.4.3 Constructor/Constructor Dependencies

Two types with circular constructor dependencies are not supported. You will get an exception when you try to resolve
types registered in this manner.

You may be able to work around this using the DynamicProxy2 extension and some creative coding.

9.5 Component Metadata / Attribute Metadata

If you’re familiar with the Managed Extensibility Framework (MEF) you have probably seen examples using component
metadata.

Metadata is information about a component, stored with that component, accessible without necessarily creating a
component instance.

9.5.1 Adding Metadata to a Component Registration

Values describing metadata are associated with the component at registration time. Each metadata item is a name/value
pair:

builder.Register(c => new ScreenAppender())
.As<ILogAppender>()
.WithMetadata("AppenderName", "screen");

The same thing can be represented in deployment-time configuration

{
"components": [{
"type": "MyApp.Components.Logging.ScreenAppender, MyApp",
"services": [{
"type": "MyApp.Services.Logging.ILogAppender, MyApp"

(continues on next page)

184 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

}],
"metadata": [{
"key": "AppenderName",
"value": "screen",
"type": "System.String, mscorlib"

}]
}]

}

9.5.2 Consuming Metadata

Unlike a regular property, a metadata item is independent of the component itself.

This makes it useful when selecting one of many components based on runtime criteria; or, where the metadata isn’t
intrinsic to the component implementation. Metadata could represent the time that an ITask should run, or the button
caption for an ICommand.

Other components can consume metadata using the Meta<T> type.

public class Log
{
readonly IEnumerable<Meta<ILogAppender>> _appenders;

public Log(IEnumerable<Meta<ILogAppender>> appenders)
{
_appenders = appenders;

}

public void Write(string destination, string message)
{
var appender = _appenders.First(a => a.Metadata["AppenderName"].Equals(␣

→˓destination));
appender.Value.Write(message);

}
}

To consume metadata without creating the target component, use Meta<Lazy<T>> or the .NET 4 Lazy<T, TMetadata>
types as shown below.

9.5.3 Strongly-Typed Metadata

To avoid the use of string-based keys for describing metadata, a metadata class can be defined with a public read/write
property for every metadata item:

public class AppenderMetadata
{
public string AppenderName { get; set; }

}

At registration time, the class is used with the overloaded WithMetadata method to associate values:

9.5. Component Metadata / Attribute Metadata 185

Autofac Documentation, Release 7.0.0

builder.Register(c => new ScreenAppender())
.As<ILogAppender>()
.WithMetadata<AppenderMetadata>(m =>

m.For(am => am.AppenderName, "screen"));

Notice the use of the strongly-typed AppenderName property.

Registration and consumption of metadata are separate, so strongly-typed metadata can be consumed via the weakly-
typed techniques and vice-versa.

You can also provide default values using the DefaultValue attribute:

public class AppenderMetadata
{
[DefaultValue("screen")]
public string AppenderName { get; set; }

}

If you are able to reference System.ComponentModel.Composition you can use the System.Lazy<T,
TMetadata> type for consuming values from the strongly-typed metadata class:

public class Log
{
readonly IEnumerable<Lazy<ILogAppender, LogAppenderMetadata>> _appenders;

public Log(IEnumerable<Lazy<ILogAppender, LogAppenderMetadata>> appenders)
{
_appenders = appenders;

}

public void Write(string destination, string message)
{
var appender = _appenders.First(a => a.Metadata.AppenderName == destination);
appender.Value.Write(message);

}
}

Another neat trick is the ability to pass the metadata dictionary into the constructor of your metadata class:

public class AppenderMetadata
{
public AppenderMetadata(IDictionary<string, object> metadata)
{
AppenderName = (string)metadata["AppenderName"];

}

public string AppenderName { get; set; }
}

186 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

9.5.4 Interface-Based Metadata

If you have access to System.ComponentModel.Composition and include a reference to the Autofac.Mef package
you can use an interface for your metadata instead of a class.

The interface should be defined with a readable property for every metadata item:

public interface IAppenderMetadata
{
string AppenderName { get; }

}

You must also call the RegisterMetadataRegistrationSources method on the ContainerBuilder before reg-
istering the metadata against the interface type.

builder.RegisterMetadataRegistrationSources();

At registration time, the interface is used with the overloaded WithMetadata method to associate values:

builder.Register(c => new ScreenAppender())
.As<ILogAppender>()
.WithMetadata<IAppenderMetadata>(m =>

m.For(am => am.AppenderName, "screen"));

Resolving the value can be done in the same manner as for class based metadata.

9.5.5 Attribute-Based Metadata

The Autofac.Extras.AttributeMetadata package enables metadata to be specified via attributes. Core Autofac
includes support to allow components to filter incoming dependencies using attributes.

To get attributed metadata working in your solution, you need to perform the following steps:

1. Create Your Metadata Attribute

2. Apply Your Metadata Attribute

3. Use Metadata Filters on Consumers

4. Ensure the Container Uses Your Attributes

Create Your Metadata Attribute

A metadata attribute is a System.Attribute implementation that has the Sys-
tem.ComponentModel.Composition.MetadataAttributeAttribute applied.

Any publicly-readable properties on the attribute will become name/value attribute pairs - the name of the metadata
will be the property name and the value will be the property value.

In the example below, the AgeMetadataAttribute will provide a name/value pair of metadata where the name will
be Age (the property name) and the value will be whatever is specified in the attribute during construction.

[MetadataAttribute]
public class AgeMetadataAttribute : Attribute
{
public int Age { get; private set; }

(continues on next page)

9.5. Component Metadata / Attribute Metadata 187

https://msdn.microsoft.com/en-us/library/system.componentmodel.composition.metadataattributeattribute.aspx
https://msdn.microsoft.com/en-us/library/system.componentmodel.composition.metadataattributeattribute.aspx

Autofac Documentation, Release 7.0.0

(continued from previous page)

public AgeMetadataAttribute(int age)
{
Age = age;

}
}

Apply Your Metadata Attribute

Once you have a metadata attribute, you can apply it to your component types to provide metadata.

// Don't apply it to the interface (service type)
public interface IArtwork
{
void Display();

}

// Apply it to the implementation (component type)
[AgeMetadata(100)]
public class CenturyArtwork : IArtwork
{
public void Display() { ... }

}

Use Metadata Filters on Consumers

Along with providing metadata via attributes, you can also set up automatic filters for consuming components. This
will help wire up parameters for your constructors based on provided metadata.

You can filter based on a service key or based on registration metadata. This attribute based filtering can be performed
without custom metadata attributes.

The KeyFilterAttribute, MetadataFilterAttribute, and WithAttributeFiltering extension method be-
low can be found in the Autofac.Features.AttributeFilters namespace in the core Autofac package.

KeyFilterAttribute

The KeyFilterAttribute allows you to select a specific keyed service to consume.

This example shows a class that requires a component with a particular key:

public class ArtDisplay : IDisplay
{
public ArtDisplay([KeyFilter("Painting")] IArtwork art) { ... }

}

That component will require you to register a keyed service with the specified name. You’ll also need to register the
component with the filter so the container knows to look for it.

188 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

var builder = new ContainerBuilder();

// Register the keyed service to consume
builder.RegisterType<MyArtwork>().Keyed<IArtwork>("Painting");

// Specify WithAttributeFiltering for the consumer
builder.RegisterType<ArtDisplay>().As<IDisplay>().WithAttributeFiltering();

// ...
var container = builder.Build();

MetadataFilterAttribute

The MetadataFilterAttribute allows you to filter for components based on specific metadata values.

This example shows a class that requires a component with a particular metadata value:

public class ArtDisplay : IDisplay
{
public ArtDisplay([MetadataFilter("Age", 100)] IArtwork art) { ... }

}

That component will require you to register a service with the specified metadata name/value pair. You could use the
attributed metadata class seen in earlier examples, or manually specify metadata during registration time. You’ll also
need to register the component with the filter so the container knows to look for it.

var builder = new ContainerBuilder();

// Register the service to consume with metadata.
// Since we're using attributed metadata, we also
// need to register the AttributedMetadataModule
// so the metadata attributes get read.
builder.RegisterModule<AttributedMetadataModule>();
builder.RegisterType<CenturyArtwork>().As<IArtwork>();

// Specify WithAttributeFilter for the consumer
builder.RegisterType<ArtDisplay>().As<IDisplay>().WithAttributeFiltering();

// ...
var container = builder.Build();

Ensure the Container Uses Your Attributes

The metadata attributes you create aren’t just used by default. In order to tell the container that you’re making use of
metadata attributes, you need to register the AttributedMetadataModule into your container.

var builder = new ContainerBuilder();

// Register the service to consume with metadata.
// Since we're using attributed metadata, we also
// need to register the AttributedMetadataModule

(continues on next page)

9.5. Component Metadata / Attribute Metadata 189

Autofac Documentation, Release 7.0.0

(continued from previous page)

// so the metadata attributes get read.
builder.RegisterModule<AttributedMetadataModule>();
builder.RegisterType<CenturyArtwork>().As<IArtwork>();

// ...
var container = builder.Build();

If you’re using metadata filters (KeyFilterAttribute or WithAttributeFiltering in your constructors), you need
to register those components using the WithAttributeFiltering extension. Note that if you’re only using filters
but not attributed metadata, you don’t actually need the AttributedMetadataModule. Metadata filters stand on their
own.

var builder = new ContainerBuilder();

// Specify WithAttributeFilter for the consumer
builder.RegisterType<ArtDisplay>().As<IDisplay>().WithAttributeFiltering();
// ...
var container = builder.Build();

9.6 Named and Keyed Services

Autofac provides three typical ways to identify services. The most common is to identify by type:

builder.RegisterType<OnlineState>().As<IDeviceState>();

This example associates the IDeviceState typed service with the OnlineState component. Instances of the com-
ponent can be retrieved using the service type with the Resolve() method:

var r = container.Resolve<IDeviceState>();

However, you can also identify services by a string name or by an object key.

9.6.1 Named Services

Services can be further identified using a service name. Using this technique, the Named() registration method replaces
As().

builder.RegisterType<OnlineState>().Named<IDeviceState>("online");

To retrieve a named service, the ResolveNamed() method is used:

var r = container.ResolveNamed<IDeviceState>("online");

Named services are simply keyed services that use a string as a key, so the techniques described in the next section
apply equally to named services.

190 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

9.6.2 Keyed Services

Using strings as component names is convenient in some cases, but in others we may wish to use keys of other types.
Keyed services provide this ability.

For example, an enum may describe the different device states in our example:

public enum DeviceState { Online, Offline }

Each enum value corresponds to an implementation of the service:

public class OnlineState : IDeviceState { }

The enum values can then be registered as keys for the implementations as shown below.

var builder = new ContainerBuilder();
builder.RegisterType<OnlineState>().Keyed<IDeviceState>(DeviceState.Online);
builder.RegisterType<OfflineState>().Keyed<IDeviceState>(DeviceState.Offline);
// Register other components here

Resolving Explicitly

The implementation can be resolved explicitly with ResolveKeyed():

var r = container.ResolveKeyed<IDeviceState>(DeviceState.Online);

This does however result in using the container as a Service Locator, which is discouraged. As an alternative to this
pattern, the IIndex type is provided.

Resolving with an Index

Autofac.Features.Indexed.IIndex<K,V> is a relationship type that Autofac implements automatically. Compo-
nents that need to choose between service implementations based on a key can do so by taking a constructor parameter
of type IIndex<K,V>.

public class Modem : IHardwareDevice
{
IIndex<DeviceState, IDeviceState> _states;
IDeviceState _currentState;

public Modem(IIndex<DeviceState, IDeviceState> states)
{

_states = states;
SwitchOn();

}

void SwitchOn()
{

_currentState = _states[DeviceState.Online];
}

}

In the SwitchOn() method, the index is used to find the implementation of IDeviceState that was registered with
the DeviceState.Online key.

9.6. Named and Keyed Services 191

Autofac Documentation, Release 7.0.0

Resolving with Attributes

The metadata feature of Autofac provides a KeyFilterAttribute that allows you to mark constructor parameters with an
attribute specifying which keyed service should be used. The attribute usage looks like this:

public class ArtDisplay : IDisplay
{
public ArtDisplay([KeyFilter("Painting")] IArtwork art) { ... }

}

When you register a component that needs attribute filtering, you need to make sure to opt in. There’s a minor but
non-zero performance hit to query for the attributes and do the filtering so it doesn’t just automatically happen.

var builder = new ContainerBuilder();
builder.RegisterType<Painting>().Keyed<IArtwork>("Painting");
builder.RegisterType<ArtDisplay>().As<IDisplay>().WithAttributeFiltering();

See the metadata documentation for more info on working with attributes and filtering.

9.7 Delegate Factories

Out of the box, Autofac supports the Func<T> and Func<X,Y,T> implicit relationships. If you need to have an auto-
matically generated factory to resolve something at runtime, these are the easiest way to go.

One drawback to the automatically generated factories is that they don’t support multiple parameters of the same type.
Further, there are times when you may want to provide a specific delegate type for the factory rather than using Func<X,
Y,T> and hoping folks always get the parameters right.

In cases like these, it may be better to consider delegate factories.

Lifetime scopes are respected using delegate factories as well as when using Func<T> or the parameterized Func<X,
Y,T> relationships. If you register an object as InstancePerDependency() and call the delegate factory multiple
times, you’ll get a new instance each time. However, if you register an object as SingleInstance() and call the
delegate factory to resolve the object more than once, you will get the same object instance every time regardless of the
different parameters you pass in. Just passing different parameters will not break the respect for the lifetime scope.

Through this page we’ll use an example of a stock portfolio where different shares are held and may need to retrieve
current quotes from a remote service.

9.7.1 Create a Delegate

The first step in setting up a delegate factory is to create a delegate that will be used to dynamically resolve values from
a lifetime scope. This will be used in place of the Func<T> or Func<X,Y,T> implicit relationship.

Here you see an individual shareholding - one stock held with a quantity. Instead of having consumers directly instan-
tiate this class, we’re going to use a delegate factory.

public class Shareholding
{
// Note both the TYPES and NAMES in the delegate match
// the parameters in the constructor. This is important!
public delegate Shareholding Factory(string symbol, uint holding);

public Shareholding(string symbol, uint holding)
(continues on next page)

192 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
Symbol = symbol;
Holding = holding;

}

public string Symbol { get; private set; }

public uint Holding { get; set; }
}

The Shareholding class declares a constructor, but also provides a delegate type that can be used to create
Shareholding instances indirectly by resolving them from a lifetime scope.

Autofac can make use of this to automatically generate a factory:

var builder = new ContainerBuilder();
builder.RegisterType<Shareholding>();
using var container = builder.Build();
using var scope = container.BeginLifetimeScope();
var createHolding = scope.Resolve<Shareholding.Factory>();

// 1234 shares of "ABC"
var holding = createHolding("ABC", 1234);

The factory is a standard delegate that can be called with Invoke() or with the function syntax as shown above..

By default, Autofac matches the parameters of the delegate to the parameters of the constructor by name. If
you use the generic Func relationships, Autofac will switch to matching parameters by type. The name matching is
important here - it allows you to provide multiple parameters of the same type if you want, which isn’t something the
Func implicit relationships can support. However, it also means that if you change the names of parameters in the
constructor, you also have to change those names in the delegate.

9.7.2 Consume the Delegate

Once you’ve registered the factory, other components can consume it.

public class Portfolio
{
private readonly Shareholding.Factory _shareHoldingFactory;

private readonly List<Shareholding> _holdings = new List<Shareholding>();

public Portfolio(Shareholding.Factory shareholdingFactory)
{
_shareHoldingFactory = shareholdingFactory;

}

public void Add(string symbol, uint holding)
{
_holdings.Add(_shareHoldingFactory(symbol, holding));

}
}

9.7. Delegate Factories 193

Autofac Documentation, Release 7.0.0

To wire this up, the Portfolio class would be registered with the container before building using:

builder.RegisterType<Portfolio>();

You can then request an instance of Portfolio from a lifetime scope:

var portfolio = scope.Resolve<Portfolio>();
portfolio.Add("DEF", 4324);

9.7.3 Add Resolved Constructor Parameters

This is the big payoff for using delegate factories: you can add more constructor parameters that get resolved from the
lifetime scope without affecting the delegate!

Imagine a remote stock quoting service:

public interface IQuoteService
{
decimal GetQuote(string symbol);

}

As part of the Shareholding class, we want to calculate the current value of the stock by getting a quote. We can add
a dependency on an IQuoteService in the Shareholding class that will be automatically filled in by Autofac - and
you don’t have to add it to the delegate! We can then add a CurrentValue() method to use the new service.

public class Shareholding
{
// We don't have to add the quote service to the factory delegate.
public delegate Shareholding Factory(string symbol, uint holding);

private readonly IQuoteService _quoteService;

// Parameters in the constructor that don't show up in
// the delegate will come from the appropriate lifetime scope.
public Shareholding(string symbol, uint holding, IQuoteService quoteService)
{
Symbol = symbol;
Holding = holding;
_quoteService = quoteService;

}

public string Symbol { get; private set; }

public uint Holding { get; set; }

public decimal CurrentValue()
{
// We can use the new service to get the current value.
return _quoteService.GetQuote(Symbol) * Holding;

}
}

An implementor of IQuoteService should also be registered with the container:

194 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

builder.RegisterType<WebQuoteService>().As<IQuoteService>();

The Portfolio class can now take advantage of the new CurrentValue() method without knowing anything about
the quote service.

public class Portfolio
{
private readonly Shareholding.Factory _shareHoldingFactory;

private readonly List<Shareholding> _holdings = new List<Shareholding>();

public Portfolio(Shareholding.Factory shareholdingFactory)
{
_shareHoldingFactory = shareholdingFactory;

}

public void Add(string symbol, uint holding)
{
// Note we don't have to pass in a quote service - Autofac
// will fill that in automatically from the lifetime scope.
_holdings.Add(_shareHoldingFactory(symbol, holding));

}

public decimal CurrentValue()
{
// We can use the new method to get the current value
// of the complete portfolio.
return _holdings.Aggregate(0m, (agg, holding) => agg + holding.CurrentValue());

}
}

9.7.4 Lifetime Scopes and Disposal

Just as with the Func<T> relationships or calling Resolve<T>() directly, using delegate factories is resolving some-
thing from a lifetime scope. If the thing you’re resolving is disposable, the lifetime scope will track it and dispose of it
when the scope is disposed. Resolving directly from the container or from a very long-lived lifetime scope when using
disposable components may result in a memory leak as the scope holds references to all the disposable components
resolved.

9.7.5 RegisterGeneratedFactory (Obsolete)

Important: RegisterGeneratedFactory is now marked as obsolete as of Autofac 7.0. Delegate factories and the
function relationships have superseded this feature.

The now-obsolete way to handle a loosely coupled scenario where the parameters are matched on type was through
the use of RegisterGeneratedFactory(). This worked very similar to delegate factories but required an explicit
registration operation.

public delegate DuplicateTypes FactoryDelegate(int a, int b, string c);

9.7. Delegate Factories 195

Autofac Documentation, Release 7.0.0

Then register that delegate using RegisterGeneratedFactory():

builder.RegisterType<DuplicateTypes>();
builder.RegisterGeneratedFactory<FactoryDelegate>(new␣
→˓TypedService(typeof(DuplicateTypes)));

Now the function will work:

var func = scope.Resolve<FactoryDelegate>();
var obj = func(1, 2, "three");

9.8 Owned Instances

9.8.1 Lifetime and Scope

Autofac controls lifetime using explicitly-delineated scopes. For example, the component providing the S service, and
all of its dependencies, will be disposed/released when the using block ends:

IContainer container = // as per usual
using (var scope = container.BeginLifetimeScope())
{
var s = scope.Resolve<S>();
s.DoSomething();

}

In an IoC container, there’s often a subtle difference between releasing and disposing a component: releasing an owned
component goes further than disposing the component itself. Any of the dependencies of the component will also be
disposed. Releasing a shared component is usually a no-op, as other components will continue to use its services.

9.8.2 Relationship Types

Autofac has a system of relationship types that can be used to provide the features of the container in a declarative way.
Instead of manipulating an IContainer or ILifetimeScope directly, as in the above example, relationship types
allow a component to specify exactly which container services are needed, in a minimal, declarative way.

Owned instances are consumed using the Owned<T> relationship type.

Owned of T

An owned dependency can be released by the owner when it is no longer required. Owned dependencies usually
correspond to some unit of work performed by the dependent component.

public class Consumer
{
private Owned<DisposableComponent> _service;

public Consumer(Owned<DisposableComponent> service)
{
_service = service;

}
(continues on next page)

196 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

public void DoWork()
{
// _service is used for some task
_service.Value.DoSomething();

// Here _service is no longer needed, so
// it is released
_service.Dispose();

}
}

When Consumer is created by the container, the Owned<DisposableComponent> that it depends upon will be cre-
ated inside its own lifetime scope. When Consumer is finished using the DisposableComponent, disposing the
Owned<DisposableComponent> reference will end the lifetime scope that contains DisposableComponent. This
means that all of DisposableComponent’s non-shared, disposable dependencies will also be released.

Combining Owned with Func

Owned instances are usually used in conjunction with a Func<T> relationship, so that units of work can be begun and
ended on-the-fly.

interface IMessageHandler
{
void Handle(Message message);

}

class MessagePump
{
Func<Owned<IMessageHandler>> _handlerFactory;

public MessagePump(Func<Owned<IMessageHandler>> handlerFactory)
{
_handlerFactory = handlerFactory;

}

public void Go()
{
while(true)
{
var message = NextMessage();

using (var handler = _handlerFactory())
{
handler.Value.Handle(message);

}
}

}
}

9.8. Owned Instances 197

Autofac Documentation, Release 7.0.0

Owned and Tags

The lifetimes created by Owned<T> use the tagging feature present as ILifetimeScope.Tag. The tag applied to a
lifetime of Owned<T> will be new TypedService(typeof(T)) - that is, the tag of the lifetime reflects its entry point.

9.9 Pooled Instances

Frequently, applications find that they have components that are expensive to initialize (like a database or external
service connection of some kind), and you’d like to re-use instances if you can rather than have to create new ones each
time.

This is usually referred to as maintaining a ‘pool’ of objects. When you want a new instance of an object, you get one
from the pool, and when you are done with it, you return it to the pool.

Autofac can help you implement a pool of components in your application without you having to write your own pooling
implementation, and making these pooled components feel more natural in the world of DI.

Note: It’s worth mentioning before we continue that a number of common .NET types, such as HttpClient or
the ADO.NET SqlConnection, already implement pooling for you behind-the-scenes, so there is nothing to gain by
adding Autofac Pooling on top of those types.

9.9.1 Getting Started

To start creating pooled Autofac registrations, first add a reference to the Autofac.Pooling NuGet package.

Once you have that, you can start defining and using pooled registrations, with the new lifetime configuration methods,
PooledInstancePerLifetimeScope and PooledInstancePerMatchingLifetimeScope:

var builder = new ContainerBuilder();

builder.RegisterType<MyCustomConnection>()
.As<ICustomConnection>()
.PooledInstancePerLifetimeScope();

var container = builder.Build();

using (var scope = container.BeginLifetimeScope())
{

// Creates a new instance of MyCustomConnection
var instance = scope.Resolve<ICustomConnection>();

instance.DoSomething();
}

// When the scope ends, the instance of MyCustomConnection
// is returned to the pool, rather than being disposed.

using (var scope2 = container.BeginLifetimeScope())
{

// Does **not** create a new instance, but instead gets the
// previous instance from the pool.

(continues on next page)

198 Chapter 9. Advanced Topics

https://nuget.org/packages/Autofac.Pooling

Autofac Documentation, Release 7.0.0

(continued from previous page)

var instance = scope.Resolve<ICustomConnection>();

instance.DoSomething();
}

// Instance gets returned back to the pool again at the
// end of the lifetime scope.

Like any other dependency, you can use these services in your constructors to inject the pooled instance:

public class WorkOperation
{

// Injects an instance from the pool.
public WorkOperation(ICustomConnection customConnection)
{

// ...
}

}

When the current lifetime scope ends, the retrieved instance is returned to the pool.

9.9.2 Resetting Pooled Instances Between Resolves

With pooled components, there is often a need to do some work to reset the object when it is retrieved from or returned
to the pool.

Autofac allows a component to be aware of when it is retrieved from or returned to the pool, by implementing the
IPooledComponent interface:

public class PoolAwareComponent : IPooledComponent
{

public void OnGetFromPool(IComponentContext context, IEnumerable<Parameter>␣
→˓parameters)

{
// Called when the component is retrieved from the pool during a resolve␣

→˓operation,
// including the first time it is used.

}

public void OnReturnToPool()
{

// Called when the component is about to be returned to the pool.
}

}

The OnGetFromPool method is passed the temporary IComponentContext of the current resolve operation, plus any
parameters passed to the resolve.

Warning: Any services resolved from the provided IComponentContext are taken from the current scope
accessing the pooled component. This means that any instances you resolve from that IComponentContext should
be discarded in OnReturnToPool to prevent memory leaks.

9.9. Pooled Instances 199

Autofac Documentation, Release 7.0.0

If you cannot modify the component you are pooling, but need to have custom behavior similar to this, you can imple-
ment a custom pool policy.

9.9.3 Pool Capacity

Each pooled registration has the notion of a pool capacity. This capacity defaults to Environment.ProcessorCount
* 2, but can easily be customized using overloads of the extension methods:

// Set a capacity of 100
builder.RegisterType<MyCustomConnection>()

.As<ICustomConnection>()

.PooledInstancePerLifetimeScope(100);

It’s important to understand that the capacity of a pool does not place a limit on the number of instances it allo-
cates/activates, or can be in use at any one time; instead it limits how many instances are retained by the pool.

In practical terms, this means that if your pool capacity is 100, and you currently have 100 instances in use, then
resolving another instance will just activate a brand new instance of the component, rather than blocking/failing.

However, if you have 101 instances of the component in use, the next instance that is returned to the pool will be
discarded rather than retained. In this situation, the OnReturnToPool method on IPooledComponent would still be
called, but the instance will then immediately be thrown away.

When an instance is discarded by the pool, if the object implements IDisposable, Dispose will be called.

If you, in fact, do want your pool to have custom behavior like blocking until a resource is available, you can implement
a custom pool policy.

Note: The Autofac Pooling behavior is built on top of the Object Pool implementation available from the Mi-
crosoft.Extensions.ObjectPool package.

The behavior of that pool informs a lot of the behavior of Autofac.Pooling.

9.9.4 Matching Lifetime Scopes

In the same way that you can configure a normal registration to be scoped to a matching lifetime scope, you can configure
a pooled registration to be scoped in the same way:

builder.RegisterType<MyCustomConnection>()
.As<ICustomConnection>()
.PooledInstancePerMatchingLifetimeScope("tag");

Pooled registrations with a matching lifetime scope result in each tagged scope retrieving its own instance from the
pool, and child scopes sharing the same pooled instance.

When the tagged lifetime scope is disposed, the instance is returned to the pool.

200 Chapter 9. Advanced Topics

https://docs.microsoft.com/en-us/aspnet/core/performance/objectpool
https://www.nuget.org/packages/Microsoft.Extensions.ObjectPool/
https://www.nuget.org/packages/Microsoft.Extensions.ObjectPool/

Autofac Documentation, Release 7.0.0

9.9.5 Pool Policies

If you need some custom behavior that is invoked when instances are retrieved from, or returned
to, the pool, you can implement IPooledRegistrationPolicy<TPooledObject> or override
DefaultPooledRegistrationPolicy<TPooledObject>.

Here’s an example of a simple policy that will block any further requests for pooled instances once the available capacity
is used up:

public class BlockingPolicy<TPooledObject> : IPooledRegistrationPolicy<TPooledObject>
where TPooledObject : class

{
private readonly SemaphoreSlim _semaphore;

public BlockingPolicy(int maxConcurrentInstances)
{

// Create a semaphore with the same 'capacity' as the number of instances.
_semaphore = new SemaphoreSlim(maxConcurrentInstances);

// Specify that the pool should hold the specified concurrent instances.
MaximumRetained = maxConcurrentInstances;

}

/// <summary>
/// Gets a value indicating the maximum number of items that will be retained in the␣

→˓pool.
/// </summary>
public int MaximumRetained { get; }

/// <summary>
/// Invoked when an instance of <typeparamref name="TPooledObject"/> is requested.␣

→˓The policy can invoke <paramref name="getFromPool"/> to
/// retrieve an instance from the pool. Equally, it could decide to ignore the pool,␣

→˓and just return a custom instance.
/// </summary>
/// <param name="context">The current component context.</param>
/// <param name="parameters">The set of parameters for the resolve request accessing␣

→˓the pool.</param>
/// <param name="getFromPool">A callback that will retrieve an item from the␣

→˓underlying pool of objects.</param>
public TPooledObject Get(IComponentContext context, IEnumerable<Parameter>␣

→˓parameters, Func<TPooledObject> getFromPool)
{

// Block on the semaphore before we attempt to retrieve an instance from the␣
→˓pool.

_semaphore.Wait();

// Return an instance from the pool (one will be created if needed).
return getFromPool();

}

/// <summary>
/// Invoked when an object is about to be returned into the pool.
/// </summary>

(continues on next page)

9.9. Pooled Instances 201

Autofac Documentation, Release 7.0.0

(continued from previous page)

/// <param name="pooledObject">The pooled object.</param>
/// <returns>
/// True if the object should be returned to the pool.
/// False if it should not be placed back in the pool (and will be disposed␣

→˓immediately if it implements <see cref="IDisposable"/>).
/// </returns>
public bool Return(TPooledObject pooledObject)
{

// Release the semaphore to free up an instance.
_semaphore.Release();

// Return true to place the object back in the pool instead of discarding it.
return true;

}
}

You can then use this policy when registering your pool:

// Register a pool that only allows a max of 100 concurrent instances.
builder.RegisterType<MyCustomConnection>()

.As<ICustomConnection>()

.PooledInstancePerLifetimeScope(new BlockingPolicy<MyCustomConnection>(100));

9.10 Custom Constructor Selection

Most of the time, when registering reflection components, choosing the correct constructor to use can be safely left up
to Autofac, or if required, a explicit constructor can be specified against the registration with UsingConstructor.

For advanced use-cases, you can implement custom behaviour to choose both the set of available constructors for a
type, and which one to use of the available set.

9.10.1 FindConstructorsWith & IConstructorFinder

The FindConstructorsWith method on a registration allows you to specify how to determine the set of available
constructors for a registration, either using a delegate to retrieve constructors from the Type:

// Find all private/internal constructors as well as public
builder.RegisterType<ComponentWithInternalConstructors>()

.FindConstructorsWith(type => type.GetDeclaredConstructors());

or by implementing IConstructorFinder, which makes it easier to cache the found constructors for performance
purposes:

public class AllConstructorsFinder : IConstructorFinder
{

private static readonly ConcurrentDictionary<Type, ConstructorInfo[]>␣
→˓ConstructorCache = new();

public ConstructorInfo[] FindConstructors(Type targetType)
{

(continues on next page)

202 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

var retval = ConstructorCache.GetOrAdd(targetType, t => t.
→˓GetDeclaredConstructors());

if (retval.Length == 0)
{

throw new NoConstructorsFoundException(targetType);
}

return retval;
}

}

// When registering...
builder.RegisterType<ComponentWithInternalConstructors>()

.FindConstructorsWith(new AllConstructorsFinder());

Note: In the case of open generic registrations, the Type passed to either the FindConstructorsWith delegate or
IConstructorFinder will be that of the concrete type, not the generic.

9.10.2 IConstructorSelector

Once the set of available constructors has been determined, each time the component is resolved, one of those con-
structors must be selected.

If there’s only one available constructor, we just use that one, but if there’s more than one available constructor, we
have to decide which constructor is most suitable.

For this, we can implement the IConstructorSelector interface. Autofac’s default implementation of this inter-
face (MostParametersConstructorSelector) chooses the constructor with the most parameters that are able to be
obtained from the container at the time of resolve.

You can use a custom implementation of IConstructorSelector when the default Autofac behaviour is not suitable.

Here’s an abstract example of a constructor selector that allows a parameter to force use of the ‘first’ constructor.

public class FirstConstructorOverrideSelector : IConstructorSelector
{

private IConstructorSelector _autofacDefault = new␣
→˓MostParametersConstructorSelector();

public BoundConstructor SelectConstructorBinding(BoundConstructor[]␣
→˓constructorBindings, IEnumerable<Parameter> parameters)

{
if (parameters.Any(x => x is ConstantParameter p && string.Equals(p.Value, "use-

→˓first")))
{

return constructorBindings.First();
}

return _autofacDefault.SelectConstructorBinding(constructorBindings, parameters);
}

}

9.10. Custom Constructor Selection 203

Autofac Documentation, Release 7.0.0

You then register the selector against the component:

builder.RegisterType<MyComponent>()
.UsingConstructor(new FirstConstructorOverrideSelector());

Note: Implementations of IConstructorSelector are only invoked if a given component has more than one avail-
able constructor.

9.11 Handling Concurrency

Autofac is designed for use in highly-concurrent applications. The guidance below will help you be successful in these
situations.

9.11.1 Component Registration

ContainerBuilder and ComponentRegistryBuilder are not thread-safe and are designed to be used only on
a single thread at the time the application starts up. This is the most common scenario and works for almost all
applications.

9.11.2 Service Resolution

All container operations are safe for use between multiple threads.

To reduce locking overhead, each Resolve operation takes place in a ‘context’ that provides the dependency-resolution
features of the container. This is the parameter provided to component registration delegates.

Resolution context objects are single-threaded and should not be used except during the course of a dependency
resolution operation.

Avoid component registrations that store the context:

// THIS IS BROKEN - DON'T DO IT
builder.Register(c => new MyComponent(c));

In the above example, the “c” IComponentContext parameter is being provided to MyComponent (which takes
IComponent as a dependency). This code is incorrect because the temporary “c” parameter will be reused.

Instead resolve IComponentContext from “c” to access the non-temporary context:

builder.Register(c =>
{
IContext threadSpecificContext = c.Resolve<IComponentContext>(); // access real␣

→˓context.
return new MyComponent(threadSpecificContext);

}

Take care also not to initialize components with closures over the “c” parameter, as any reuse of “c” will cause issues.

The container hierarchy mechanism further reduces locking, by maintaining local copies of the component registrations
for any factory/container components. Once the initial registration copy has been made, a thread using an ‘inner’
container can create or access such components without blocking any other thread.

204 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

9.11.3 Lifetime Events

When making use of the LifetimeEvents available, don’t call back into the container in handlers for the Preparing,
Activating or Activated events: use the supplied IComponentContext instead.

9.11.4 Thread Scoped Services

You can use Autofac to register services that are specific to a thread. The instance lifetime scope page has more
information on this.

9.11.5 Internals

Keeping in mind the guidelines above, here’s a little more specific information about thread safety and locking in
Autofac.

9.11.6 Thread-Safe Types

The following types are safe for concurrent access by multiple threads:

• Container

• Disposer (default implementation of IDisposer)

• LifetimeScope (default implementation of ILifetimeScope)

These types cover practically all of the runtime/resolution scenarios.

The following types are designed for single-threaded access at configuration time:

• ContainerBuilder

• ComponentRegistryBuilder (default implementation of IComponentRegistryBuilder)

So, a correct Autofac application will use a ContainerBuilder on a single thread to create the container at startup.
Subsequent use of the container can occur on any thread.

9.11.7 Deadlock Avoidance

Autofac is designed in such a way that deadlocks won’t occur in normal use. This section is a guide for maintainers or
extension writers.

Locks may be acquired in the following order:

• A thread holding a lock for any of the following may not acquire any further locks:

– Disposer

• A thread holding the lock for a LifetimeScope may subsequently acquire the lock for:

– Its parent LifetimeScope

– Any of the items listed above

9.11. Handling Concurrency 205

Autofac Documentation, Release 7.0.0

9.12 Multitenant Applications

Autofac.Multitenant enables multitenant dependency injection support. (Prior to v4.0.0, the package was called
Autofac.Extras.Multitenant.)

• What Is Multitenancy?

• General Principles

– Reference NuGet Packages

– Register Dependencies

– Identify the Tenant

– Resolve Tenant-Specific Dependencies

• ASP.NET Integration

– ASP.NET Application Startup

– Tenant-Specific Controllers

• ASP.NET Core Integration

• WCF Integration

– Reference Packages for WCF Integration

– Passing Tenant ID with a Behavior

– Tenant Identification from OperationContext

– Hosting Multitenant Services

∗ Managing Service Attributes

∗ Tenant-Specific Service Implementations

– WCF Application Startup

∗ WCF Client Application Startup

∗ WCF Service Application Startup

• Tenant ID Strategy Tips

• Example

9.12.1 What Is Multitenancy?

A multitenant application is an application that you can deploy one time yet allow separate customers, or “tenants,”
to view the application as though it was their own.

Consider, for example, a hosted online store application - you, the tenant, lease the application, set some configuration
values, and when an end user visits the application under your custom domain name, it looks like your company. Other
tenants may also lease the application, yet the application is deployed only one time on a central, hosted server and
changes its behavior based on the tenant (or tenant’s end-users) accessing it.

Many changes in a multitenant environment are performed via simple configuration. For example, the colors or fonts
displayed in the UI are simple configuration options that can be “plugged in” without actually changing the behavior
of the application.

206 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

In a more complex scenario, you may need to change business logic on a per-tenant basis. For example, a specific
tenant leasing space on the application may want to change the way a value is calculated using some complex custom
logic. How do you register a default behavior/dependency for an application and allow a specific tenant to
override it?

This is the functionality that Autofac.Multitenant attempts to address.

9.12.2 General Principles

In general, a multitenant application has four tasks that need to be performed with respect to dependency resolution:

1. Reference NuGet Packages

2. Register Dependencies

3. Identify the Tenant

4. Resolve Tenant-Specific Dependencies

This section outlines how these four steps work. Later sections will expand on these topics to include information on
how to integrate these principles with specific application types.

Reference NuGet Packages

Any application that wants to use multitenancy needs to add references to the NuGet packages. . .

• Autofac

• Autofac.Multitenant

That’s the bare minimum. WCF applications also need Autofac.Multitenant.Wcf.

Register Dependencies

Autofac.Multitenant introduces a new container type called Autofac.Multitenant.MultitenantContainer.
This container is used for managing application-level defaults and tenant-specific overrides.

The overall registration process is:

1. Create an application-level default container. This container is where you register the default dependencies
for the application. If a tenant doesn’t otherwise provide an override for a dependency type, the dependencies
registered here will be used.

2. Instantiate a tenant identification strategy. A tenant identification strategy is used to determine the ID for the
current tenant based on execution context. You can read more on this later in this document.

3. Create a multitenant container. The multitenant container is responsible for keeping track of the application
defaults and the tenant-specific overrides.

4. Register tenant-specific overrides. For each tenant wishing to override a dependency, register the appropriate
overrides passing in the tenant ID and a configuration lambda.

General usage looks like this:

// First, create your application-level defaults using a standard
// ContainerBuilder, just as you are used to.
var builder = new ContainerBuilder();
builder.RegisterType<Consumer>().As<IDependencyConsumer>().InstancePerDependency();
builder.RegisterType<BaseDependency>().As<IDependency>().SingleInstance();

(continues on next page)

9.12. Multitenant Applications 207

Autofac Documentation, Release 7.0.0

(continued from previous page)

var appContainer = builder.Build();

// Once you've built the application-level default container, you
// need to create a tenant identification strategy. The details of this
// are discussed later on.
var tenantIdentifier = new MyTenantIdentificationStrategy();

// Now create the multitenant container using the application
// container and the tenant identification strategy.
var mtc = new MultitenantContainer(tenantIdentifier, appContainer);

// Configure the overrides for each tenant by passing in the tenant ID
// and a lambda that takes a ContainerBuilder.
mtc.ConfigureTenant('1', b => b.RegisterType<Tenant1Dependency>().As<IDependency>().
→˓InstancePerDependency());
mtc.ConfigureTenant('2', b => b.RegisterType<Tenant2Dependency>().As<IDependency>().
→˓SingleInstance());

// Now you can use the multitenant container to resolve instances.

If you have a component that needs one instance per tenant, you can use the InstancePerTenant() registration
extension method at the container level.

var builder = new ContainerBuilder();
builder.RegisterType<SomeType>().As<ISomeInterface>().InstancePerTenant();
// InstancePerTenant goes in the main container; other
// tenant-specific dependencies get registered as shown
// above, in tenant-specific lifetimes.

Note that you may only configure a tenant one time. After that, you may not change that tenant’s overrides. Also, if
you resolve a dependency for a tenant, their lifetime scope may not be changed. It is good practice to configure your
tenant overrides at application startup to avoid any issues. If you need to perform some business logic to “build” the
tenant configuration, you can use the Autofac.Multitenant.ConfigurationActionBuilder.

var builder = new ContainerBuilder();
// ... register things...
var appContainer = builder.Build();
var tenantIdentifier = new MyTenantIdentificationStrategy();
var mtc = new MultitenantContainer(tenantIdentifier, appContainer);

// Create a configuration action builder to aggregate registration
// actions over the course of some business logic.
var actionBuilder = new ConfigurationActionBuilder();

// Do some logic...
if(SomethingIsTrue())
{
actionBuilder.Add(b => b.RegisterType<AnOverride>().As<ISomething>());

}
actionBuilder.Add(b => b.RegisterType<SomeClass>());
if(AnotherThingIsTrue())
{

(continues on next page)

208 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

actionBuilder.Add(b => b.RegisterModule<MyModule>());
}

// Now configure a tenant using the built action.
mtc.ConfigureTenant('1', actionBuilder.Build());

Identify the Tenant

In order to resolve a tenant-specific dependency, Autofac needs to know which tenant is making the resolution request.
That is, “for the current execution context, which tenant is resolving dependencies?”

Autofac.Multitenant includes an ITenantIdentificationStrategy interface that you can implement to provide
just such a mechanism. This allows you to retrieve the tenant ID from anywhere appropriate to your application: an
environment variable, a role on the current user’s principal, an incoming request value, or anywhere else.

The following example shows what a simple ITenantIdentificationStrategy that a web application might look
like.

using System;
using System.Web;
using Autofac.Multitenant;

namespace DemoNamespace
{
// SUPER IMPORTANT DISCLAIMERS:
// * This is an EXAMPLE ONLY and is NOT RECOMMENDED.
// * There's very little error checking here and is NOT ROBUST.
// * SERIOUSLY THIS IS JUST AN ILLUSTRATIVE EXAMPLE.
public class RequestParameterStrategy : ITenantIdentificationStrategy
{
public bool TryIdentifyTenant(out object tenantId)
{
tenantId = null;
try
{
var context = HttpContext.Current;
if(context != null && context.Request != null)
{
tenantId = context.Request.Params["tenant"];

}
}
catch(HttpException)
{
// Happens at app startup in IIS 7.0

}
return tenantId != null;

}
}

}

In this example, a web application is using an incoming request parameter to get the tenant ID. (Note that this is just
an example and is not recommended because it would allow any user on the system to very easily just switch tenants.
It also doesn’t handle resolving things that occur outside of a web request.)

9.12. Multitenant Applications 209

Autofac Documentation, Release 7.0.0

In your custom strategy implementation, you may choose to represent your tenant IDs as GUIDs, integers, or any other
custom type. The strategy here is where you would parse the value from the execution context into a strongly typed
object and succeed/fail based on whether the value is present and/or whether it can be parsed into the appropriate type.

Autofac.Multitenant uses System.Object as the tenant ID type throughout the system for maximum flexibility.

Performance is important in tenant identification. Tenant identification happens every time you resolve a compo-
nent, begin a new lifetime scope, etc. As such, it is very important to make sure your tenant identification strategy is
fast. For example, you wouldn’t want to do a service call or a database query during tenant identification.

Be sure to handle errors well in tenant identification. Especially in situations like ASP.NET application startup,
you may use some contextual mechanism (like HttpContext.Current.Request) to determine your tenant ID, but if
your tenant ID strategy gets called when that contextual information isn’t available, you need to be able to handle that.
You’ll see in the above example that not only does it check for the current HttpContext, but also the Request. Check
everything and handle exceptions (e.g., parsing exceptions) or you may get some odd or hard-to-troubleshoot behavior.

There are additional tips for your tenant ID strategy in the Tenant ID Strategy Tips section.

Resolve Tenant-Specific Dependencies

The way the MultitenantContainer works, each tenant on the system gets their own Autofac.ILifetimeScope
instance which contains the set of application defaults along with the tenant-specific overrides. Doing this. . .

var builder = new ContainerBuilder();
builder.RegisterType<BaseDependency>().As<IDependency>().SingleInstance();
var appContainer = builder.Build();

var tenantIdentifier = new MyTenantIdentificationStrategy();

var mtc = new MultitenantContainer(tenantIdentifier, appContainer);
mtc.ConfigureTenant('1', b => b.RegisterType<Tenant1Dependency>().As<IDependency>().
→˓InstancePerDependency());

Is very much like using the standard ILifetimeScope.BeginLifetimeScope(Action<ContainerBuilder>),
like this:

var builder = new ContainerBuilder();
builder.RegisterType<BaseDependency>().As<IDependency>().SingleInstance();
var appContainer = builder.Build();

using(var scope = appContainer.BeginLifetimeScope(
b => b.RegisterType<Tenant1Dependency>().As<IDependency>().InstancePerDependency())
{
// Do work with the created scope...

}

When you use the MultitenantContainer to resolve a dependency, behind the scenes it calls your
ITenantIdentificationStrategy to identify the tenant, it locates the tenant’s lifetime scope (with their configured
overrides), and resolves the dependency from that scope. It does all this transparently, so you can use the multitenant
container the same as you do other containers.

var dependency = mtc.Resolve<IDependency>();
// "dependency" will be a tenant-specific value resolved from
// the multitenant container. If the current tenant has overridden

(continues on next page)

210 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

// the IDependency registration, that override will be resolved;
// otherwise it will be the application-level default.

The important bit here is that all the work is going on transparently behind the scenes. Any call to Resolve,
BeginLifetimeScope, Tag, Disposer, or the other methods/properties on the IContainer interface will all go
through the tenant identification process and the result of the call will be tenant-specific.

If you need to specifically access a tenant’s lifetime scope or the application container, the MultitenantContainer
provides:

• ApplicationContainer: Gets the application container.

• GetCurrentTenantScope: Identifies the current tenant and returns their specific lifetime scope.

• GetTenantScope: Allows you to provide a specific tenant ID for which you want the lifetime scope.

9.12.3 ASP.NET Integration

ASP.NET integration is not really any different than standard ASP.NET application integration. Really, the only dif-
ference is that you will set up your application’s Autofac.Integration.Web.IContainerProvider or System.
,Web.Mvc.IDependencyResolver or whatever with an Autofac.Multitenant.MultitenantContainer rather
than a regular container built by a ContainerBuilder. Since the MultitenantContainer handles multitenancy in
a transparent fashion, “things just work.”

ASP.NET Application Startup

Here is a sample ASP.NET MVC Global.asax implementation illustrating how simple it is:

namespace MultitenantExample.MvcApplication
{
public class MvcApplication : HttpApplication
{
public static void RegisterRoutes(RouteCollection routes)
{
// Register your routes - standard MVC stuff.

}

protected void Application_Start()
{
// Set up the tenant ID strategy and application container.
// The request parameter tenant ID strategy is used here as an example.
// You should use your own strategy in production.
var tenantIdStrategy = new RequestParameterTenantIdentificationStrategy("tenant");
var builder = new ContainerBuilder();
builder.RegisterType<BaseDependency>().As<IDependency>();

// If you have tenant-specific controllers in the same assembly as the
// application, you should register controllers individually.
builder.RegisterType<HomeController>();

// Create the multitenant container and the tenant overrides.
var mtc = new MultitenantContainer(tenantIdStrategy, builder.Build());
mtc.ConfigureTenant("1",

(continues on next page)

9.12. Multitenant Applications 211

Autofac Documentation, Release 7.0.0

(continued from previous page)

b =>
{
b.RegisterType<Tenant1Dependency>().As<IDependency>().InstancePerDependency();
b.RegisterType<Tenant1Controller>().As<HomeController>();

});

// Here's the magic line: Set up the DependencyResolver using
// a multitenant container rather than a regular container.
DependencyResolver.SetResolver(new AutofacDependencyResolver(mtc));

// ...and everything else is standard MVC.
AreaRegistration.RegisterAllAreas();
RegisterRoutes(RouteTable.Routes);

}
}

}

As you can see, it’s almost the same as regular MVC Autofac integration. You set up the application container, the
tenant ID strategy, the multitenant container, and the tenant overrides as illustrated earlier in Register Dependencies and
Identify the Tenant. Then when you set up your DependencyResolver, give it the multitenant container. Everything
else just works.

This similarity is true for other web applications as well. When setting up your IContainerProviderAccessor
for web forms, use the multitenant container instead of the standard container. When setting up your Web API
DependencyResolver, use the multitenant container instead of the standard container.

Note in the example that controllers are getting registered individually rather than using the all-at-once builder.
RegisterControllers(Assembly.GetExecutingAssembly()); style of registration. See below for more on why
this is the case.

Tenant-Specific Controllers

You may choose, in an MVC application, to allow a tenant to override a controller. This is possible, but requires a little
forethought.

First, tenant-specific controllers must derive from the controller they are overriding. For example, if you have a
HomeController for your application and a tenant wants to create their own implementation of it, they need to derive
from it, like. . .

public class Tenant1HomeController : HomeController
{
// Tenant-specific implementation of the controller.

}

Second, if your tenant-specific controllers are in the same assembly as the rest of the application, you can’t
register your controllers in one line. You may have seen in standard ASP.NET MVC integration a line like builder.
RegisterControllers(Assembly.GetExecutingAssembly()); to register all the controllers in the assembly at
once. Unfortunately, if you have tenant-specific controllers in the same assembly, they’ll all be registered at the appli-
cation level if you do this. Instead, you need to register each application controller at the application level one at a time,
and then configure tenant-specific overrides the same way.

The example Global.asax above shows this pattern of registering controllers individually.

Of course, if you keep your tenant-specific controllers in other assemblies, you can register all of the application con-
trollers at once using builder.RegisterControllers(Assembly.GetExecutingAssembly()); and it’ll work

212 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

just fine. Note that if your tenant-specific controller assemblies aren’t referenced by the main application (e.g., they’re
“plugins” that get dynamically registered at startup using assembly probing or some such) you’ll need to register your
assemblies with the ASP.NET BuildManager.

Finally, when registering tenant-specific controllers, register them “as” the base controller type. In the example above,
you see the default controller registered in the application container like this:

var builder = new ContainerBuilder();
builder.RegisterType<HomeController>();

Then when the tenant overrides the controller in their tenant configuration, it looks like this:

var mtc = new MultitenantContainer(tenantIdStrategy, builder.Build());
mtc.ConfigureTenant("1", b => b.RegisterType<Tenant1Controller>().As<HomeController>());

Due to the relative complexity of this, it may be a better idea to isolate business logic into external dependencies
that get passed into your controllers so the tenants can provide override dependencies rather than override
controllers.

9.12.4 ASP.NET Core Integration

ASP.NET Core changes a lot of things. The multitenant integration is outlined on our ASP.NET Core integration page.

9.12.5 WCF Integration

WCF integration is just slightly different than the standard WCF integration in that you need to use a different service
host factory than the standard Autofac host factory and there’s a little additional configuration required.

Also, identifying a tenant is a little harder - the client needs to pass the tenant ID to the service somehow and the service
needs to know how to interpret that passed tenant ID. A simple solution to this is provided in the form of a behavior
that passes the relevant information in message headers.

Reference Packages for WCF Integration

For an application consuming a multitenant service (a client application), add references to. . .

• Autofac

• Autofac.Multitenant

For an application providing a multitenant service (a service application), add references to. . .

• Autofac

• Autofac.Integration.Wcf

• Autofac.Multitenant

• Autofac.Multitenant.Wcf

9.12. Multitenant Applications 213

Autofac Documentation, Release 7.0.0

Passing Tenant ID with a Behavior

As mentioned earlier (Identify the Tenant), for multitenancy to work you have to identify which tenant is making a
given call so you can resolve the appropriate dependencies. One of the challenges in a service environment is that the
tenant is generally established on the client application end and that tenant ID needs to be propagated to the service so
it can behave appropriately.

A common solution to this is to propagate the tenant ID in message headers. The client adds a special header to an
outgoing message that contains the tenant ID. The service parses that header, reads out the tenant ID, and uses that ID
to determine its functionality.

In WCF, the way to attach these “dynamic” headers to messages and read them back is through a behavior. You apply
the behavior to both the client and the service ends so the same header information (type, URN, etc.) is used.

Autofac.Multitenant provides a simple tenant ID propagation behavior in Autofac.Multitenant.Wcf.
TenantPropagationBehavior. Applied on the client side, it uses the tenant ID strategy to retrieve the contextual
tenant ID and insert it into a message header on an outgoing message. Applied on the server side, it looks for this
inbound header and parses the tenant ID out, putting it into an OperationContext extension.

The WCF Application Startup section below shows examples of putting this behavior in action both on the client and
server sides.

If you use this behavior, a corresponding server-side tenant identification strategy is also provided for you. See Tenant
Identification from OperationContext, below.

Tenant Identification from OperationContext

Whether or not you choose to use the provided Autofac.Multitenant.Wcf.TenantPropagationBehavior to
propagate behavior from client to server in a message header (see above Passing Tenant ID with a Behavior), a good
place to store the tenant ID for the life of an operation is in the OperationContext.

Autofac.Multitenant.Wcf provides the Autofac.Multitenant.Wcf.TenantIdentificationContextExtension
as an extension to the WCF OperationContext for just this purpose.

Early in the operation lifecycle (generally in a System.ServiceModel.Dispatcher.IDispatchMessageInspector.AfterReceiveRequest()
implementation), you can add the TenantIdentificationContextExtension to the current OperationContext
so the tenant can be easily identified. A sample AfterReceiveRequest() implementation below shows this in
action:

public object AfterReceiveRequest(ref Message request, IClientChannel channel,␣
→˓InstanceContext instanceContext)
{
// This assumes the tenant ID is coming from a message header; you can
// get it from wherever you want.
var tenantId = request.Headers.GetHeader<TTenantId>(TenantHeaderName,␣

→˓TenantHeaderNamespace);

// Here's where you add the context extension:
OperationContext.Current.Extensions.Add(new TenantIdentificationContextExtension() {␣

→˓TenantId = tenantId });
return null;

}

Once the tenant ID is attached to the context, you can use an appropriate ITenantIdentificationStrategy to
retrieve it as needed.

214 Chapter 9. Advanced Topics

https://msdn.microsoft.com/en-us/library/system.servicemodel.dispatcher.idispatchmessageinspector.afterreceiverequest.aspx

Autofac Documentation, Release 7.0.0

If you use the TenantIdentificationContextExtension, then the provided Auto-
fac.Multitenant.Wcf.OperationContextTenantIdentificationStrategy will automatically work to get the
tenant ID from OperationContext.

Hosting Multitenant Services

In a WCF service application, service implementations may be tenant-specific yet share the same service contract.
This allows you to provide your service contracts in a separate assembly to tenant-specific developers and allow them
to implement custom logic without sharing any of the internals of your default implementation.

To enable this to happen, a custom strategy has been implemented for multitenant service location - Autofac.
Multitenant.Wcf.MultitenantServiceImplementationDataProvider.

In your service’s .svc file, you must specify:

• The full type name of the service contract interface. In regular WCF integration Autofac allows you to use
either typed or named services. For multitenancy, you must use a typed service that is based on the service
contract interface.

• The full type name of the Autofac host factory. This lets the hosting environment know which factory to use.
(This is just like the standard Autofac WCF integration.)

An example .svc file looks like this:

<%@ ServiceHost
Service="MultitenantExample.WcfService.IMultitenantService, MultitenantExample.

→˓WcfService"
Factory="Autofac.Integration.Wcf.AutofacServiceHostFactory, Autofac.Integration.Wcf"

→˓%>

When registering service implementations with the Autofac container, you must register the implementations as the
contract interface, like this:

builder.RegisterType<BaseImplementation>().As<IMultitenantService>();

Tenant-specific overrides may then register using the interface type as well:

mtc.ConfigureTenant("1", b =>b.RegisterType<Tenant1Implementation>().As
→˓<IMultitenantService>());

And don’t forget at app startup, around where you set the container, you need to tell Autofac you’re doing multitenancy:

AutofacHostFactory.ServiceImplementationDataProvider =
new MultitenantServiceImplementationDataProvider();

Managing Service Attributes

When configuring WCF services in XML configuration (e.g., web.config), WCF automatically infers the name of the
service element it expects from the concrete service implementation type. For example, in a single-tenant imple-
mentation, your MyNamespace.IMyService service interface might have one implementation called MyNamespace.
MyService and that’s what WCF would expect to look for in web.config, like this:

<system.serviceModel>
<services>

(continues on next page)

9.12. Multitenant Applications 215

Autofac Documentation, Release 7.0.0

(continued from previous page)

<service name="MyNamespace.MyService" />
</services>

</system.serviceModel>

However, when using a multitenant service host, the concrete service type that implements the interface is a dynamically
generated proxy type, so the service configuration name becomes an auto-generated type name, like this:

<system.serviceModel>
<services>
<service name="Castle.Proxies.IMyService_1" />

</services>
</system.serviceModel>

To make this easier, Autofac.Multitenant.Wcf provides the Autofac.Multitenant.Wcf.
ServiceMetadataTypeAttribute, which you can use to create a “metadata buddy class” (similar to the
System.ComponentModel.DataAnnotations.MetadataTypeAttribute) that you can mark with type-level
attributes and modify the behavior of the dynamic proxy.

In this case, you need the dynamic proxy to have a System.ServiceModel.ServiceBehaviorAttribute so you
can define the ConfigurationName to expect.

First, mark your service interface with a ServiceMetadataTypeAttribute:

using System;
using System.ServiceModel;
using Autofac.Multitenant.Wcf;

namespace MyNamespace
{
[ServiceContract]
[ServiceMetadataType(typeof(MyServiceBuddyClass))]
public interface IMyService
{
// ...define your service operations...

}
}

Next, create the buddy class you specified in the attribute and add the appropriate metadata.

using System;
using System.ServiceModel;

namespace MyNamespace
{
[ServiceBehavior(ConfigurationName = "MyNamespace.IMyService")]
public class MyServiceBuddyClass
{
}

}

Now in your XML configuration file, you can use the configuration name you specified on the buddy class:

<system.serviceModel>
<services>

(continues on next page)

216 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

<service name="MyNamespace.IMyService" />
</services>

</system.serviceModel>

Important notes about metadata: - Only type-level attributes are copied. At this time, only attributes at the type
level are copied over from the buddy class to the dynamic proxy. If you have a use case for property/method level
metadata to be copied, please file an issue. - Not all metadata will have the effect you expect. For example, if you use
the ServiceBehaviorAttribute to define lifetime related information like InstanceContextMode, the service will
not follow that directive because Autofac is managing the lifetime, not the standard service host. Use common sense
when specifying metadata - if it doesn’t work, don’t forget you’re not using the standard service lifetime management
functionality. - Metadata is application-level, not per-tenant. The metadata buddy class info will take effect at an
application level and can’t be overridden per tenant.

Tenant-Specific Service Implementations

If you are hosting multitenant services (Hosting Multitenant Services), you can provide tenant-specific service imple-
mentations. This allows you to provide a base implementation of a service and share the service contract with tenants
to allow them to develop custom service implementations.

You must implement your service contract as a separate interface. You can’t mark your service implementation
with the ServiceContractAttribute. Your service implementations must then implement the interface. This is
good practice anyway, but the multitenant service host won’t allow concrete types to directly define the contract.

Tenant-specific service implementations do not need to derive from the base implementation; they only need to imple-
ment the service interface.

You can register tenant-specific service implementations in app startup (see WCF Application Startup).

WCF Application Startup

Application startup is generally the same as any other multitenant application (Register Dependencies), but there are a
couple of minor things to do for clients, and a little bit of hosting setup for services.

WCF Client Application Startup

In a WCF client application, when you register your service clients you’ll need to register the behavior that propagates
the tenant ID to the service. If you’re following the standard WCF integration guidance, then registering a service client
looks like this:

// Create the tenant ID strategy for the client application.
var tenantIdStrategy = new MyTenantIdentificationStrategy();

// Register application-level dependencies.
var builder = new ContainerBuilder();
builder.RegisterType<BaseDependency>().As<IDependency>();

// The service client is not different per tenant because
// the service itself is multitenant - one client for all
// the tenants and ***the service implementation*** switches.
builder.Register(c =>
new ChannelFactory<IMultitenantService>(

(continues on next page)

9.12. Multitenant Applications 217

Autofac Documentation, Release 7.0.0

(continued from previous page)

new BasicHttpBinding(),
new EndpointAddress("http://server/MultitenantService.svc"))).SingleInstance();

// Register an endpoint behavior on the client channel factory that
// will propagate the tenant ID across the wire in a message header.
// In this example, the built-in TenantPropagationBehavior is used
// to send a string-based tenant ID across the wire.
builder.Register(c =>
{
var factory = c.Resolve<ChannelFactory<IMultitenantService>>();
factory.Opening += (sender, args) => factory.Endpoint.Behaviors.Add(new␣

→˓TenantPropagationBehavior<string>(tenantIdStrategy));
return factory.CreateChannel();

});

// Create the multitenant container.
var mtc = new MultitenantContainer(tenantIdStrategy, builder.Build());

// ... register tenant overrides, etc.

WCF Service Application Startup

In a WCF service application, you register your defaults and tenant-specific overrides just as you normally would
(Register Dependencies) but you have to also:

• Set up the behavior for service hosts to expect an incoming tenant ID header (Passing Tenant ID with a Behavior)
for tenant identification.

• Set the service host factory container to a MultitenantContainer.

In the example below, we are using the Autofac.Multitenant.Wcf.AutofacHostFactory rather than the standard Aut-
ofac host factory (as outlined earlier).

namespace MultitenantExample.WcfService
{
public class Global : System.Web.HttpApplication
{
protected void Application_Start(object sender, EventArgs e)
{
// Create the tenant ID strategy.
var tenantIdStrategy = new OperationContextTenantIdentificationStrategy();

// Register application-level dependencies and service implementations.
var builder = new ContainerBuilder();
builder.RegisterType<BaseImplementation>().As<IMultitenantService>();
builder.RegisterType<BaseDependency>().As<IDependency>();

// Create the multitenant container.
var mtc = new MultitenantContainer(tenantIdStrategy, builder.Build());

// Notice we configure tenant IDs as strings below because the tenant
// identification strategy retrieves string values from the message

(continues on next page)

218 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

// headers.

// Configure overrides for tenant 1 - dependencies, service implementations, etc.
mtc.ConfigureTenant("1",
b =>
{
b.RegisterType<Tenant1Dependency>().As<IDependency>().InstancePerDependency();
b.RegisterType<Tenant1Implementation>().As<IMultitenantService>();

});

// Add a behavior to service hosts that get created so incoming messages
// get inspected and the tenant ID can be parsed from message headers.
AutofacHostFactory.HostConfigurationAction =
host =>
host.Opening += (s, args) =>
host.Description.Behaviors.Add(new TenantPropagationBehavior<string>

→˓(tenantIdStrategy));

// Set the service implementation strategy to multitenant.
AutofacHostFactory.ServiceImplementationDataProvider =
new MultitenantServiceImplementationDataProvider();

// Finally, set the host factory application container on the multitenant
// WCF host to a multitenant container.
AutofacHostFactory.Container = mtc;

}
}

}

9.12.6 Tenant ID Strategy Tips

• Performance is key. The tenant ID strategy will execute on every resolve operation and every lifetime scope
creation in the multitenant container. Do everything you can to make it efficient - cache things instead of database
lookups every time, reduce memory allocations, etc.

• Handle errors well. If the tenant ID strategy blows up for any reason, it’s going to be potentially difficult to
troubleshoot. Make sure you check for nulls and handle exceptions. From a performance perspective, make sure
you use TryGet or TryParse sorts of operations rather than try/catch and letting exceptions control flow.

• Make your tenant ID strategy a singleton. The multitenant container stores an instance of the tenant ID strategy.
If you are registering the strategy in your base (non-multitenant) container, make sure you register it as a singleton.
Further, make sure dependencies that the tenant ID strategy might consume are also singletons. . . or are allowed
to have individual instances cached.

• If you can, create the tenant ID strategy and then register it rather than simply registering a type with Autofac
and letting it resolve. It’s tempting to “over-DI” things. The tenant ID strategy is pretty foundational and you
want to make sure it works; troubleshooting why something didn’t inject into the strategy can be painful. Further,
it can be easy to “accidentally” make the tenant ID strategy a factory scoped or per-lifetime-scope thing and that
won’t work. It can also be easy to lose sight of the fact that things going into the tenant ID strategy are cached
for the lifetime of the app, not something that gets populated per request. If you actually “new-up” the strategy
and register the instance with Autofac rather than registering a singleton type, it can drive home that discipline
and help you avoid issues.

9.12. Multitenant Applications 219

Autofac Documentation, Release 7.0.0

• Watch for threading issues! The tenant ID strategy is held by the multitenant container and used across all
operations. It’s a singleton! If you cache things, make the cache operations thread-safe. If you store state, make
sure it’s in a structure like a dictionary where you can store state for every tenant in the system (or cache lookups
in a non-tenant-specific way). If you have an instance variable called “tenant,” you’re going to have trouble - that
“tenant” isn’t the same across every thread and every resolve operation.

9.12.7 Example

The Autofac example repository has a multitenant WCF service and associated client MVC application to illustrate
how multitenant service hosting works.

There is also a very simple console application example.

9.13 AssemblyLoadContext and Lifetime Scopes

In .NET Core the AssemblyLoadContext was introduced, allowing developers to dynamically load and unload assem-
blies from their application. This is very useful for developers writing applications with plugin-based architectures.

In order to unload the assemblies in an AssemblyLoadContext when an assembly is no longer needed, no references
to types in that assembly can be held by anything outside the loaded context. This includes Autofac, which by default
holds a variety of internal references and caches for types that have been registered.

As of Autofac 7.0, we’ve added support for indicating to Autofac that a given lifetime scope represents types loaded for
a given AssemblyLoadContext; when a lifetime scope created for a specific AssemblyLoadContext is unloaded,
Autofac will make a best-effort attempt to remove all references we hold for types from the loaded context, to allow the
AssemblyLoadContext to be unloaded.

You indicate that a lifetime scope is for an AssemblyLoadContextwith the new BeginLoadContextLifetimeScope
method. Here’s a full example:

//
// In PluginDefinition project.
//

public interface IPlugin
{
void DoSomething();

}

//
// In MyPlugin project.
//

public class MyPlugin : IPlugin
{

public void DoSomething()
{
Console.WriteLine("Hello World");

}
}

//
// In the application.

(continues on next page)

220 Chapter 9. Advanced Topics

https://github.com/autofac/Examples/tree/master/src/MultitenantExample.WcfService
https://github.com/autofac/Examples/tree/master/src/MultitenantExample.MvcApplication
https://github.com/autofac/Examples/tree/master/src/MultitenantExample.ConsoleApplication
https://learn.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext

Autofac Documentation, Release 7.0.0

(continued from previous page)

//

var builder = new ContainerBuilder();

// Components defined in the "Default" load context will be available in load context␣
→˓lifetime scopes.
builder.RegisterType<DefaultComponent>();

var container = builder.Build();

var loadContext = new AssemblyLoadContext("PluginContext", isCollectible: true);

using (var scope = container.BeginLoadContextLifetimeScope(loadContext, builder =>
{
var pluginAssembly = loadContext.LoadFromAssemblyPath("plugins/MyPlugin.dll");

builder.RegisterAssemblyTypes(pluginAssembly).AsImplementedInterfaces();
}))
{
// The application should reference the PluginDefinition project, which means the
// default load context will have loaded the IPlugin interface already. When the
// MyPlugin assembly gets loaded it should share the same type and allow resolution
// with the common interface.
var plugin = scope.Resolve<IPlugin>();

plugin.DoSomething();
}

loadContext.Unload();

Note: If you capture a reference to any resolved components, or any types in the loaded assembly, outside Autofac it’s
highly likely you won’t be able to unload your load context.

AssemblyLoadContexts are tricky to use in such a way that unloading is guaranteed every time (whether using Autofac
or not). See the dotnet documentation on troubleshooting unloadability if you run into problems.

You can create additional lifetime scopes from your “load context scope” using the regular BeginLifetimeScope method,
without needing to further track your load context.

That means you can load a plugin, then the plugin can resolve ILifetimeScope and create new scopes, with all the
assembly metadata being isolated to that initial “load context scope”.

9.13. AssemblyLoadContext and Lifetime Scopes 221

https://learn.microsoft.com/en-us/dotnet/standard/assembly/unloadability#troubleshoot-unloadability-issues

Autofac Documentation, Release 7.0.0

9.14 Resolve Pipelines

In Autofac (from version 6.0 onwards), the work of actually resolving an instance of a registration when a service is
requested is implemented as a pipeline, consisting of multiple middleware. Each individual middleware represents
some part of the process required to construct or locate your instance and return it to you.

For advanced customization scenarios, Autofac allows you to add your own middleware into the pipeline to intercept,
short-circuit or extend the existing resolve behavior.

9.15 Service Pipelines vs Registration Pipelines

An individual resolve request actually ends up invoking two different pipelines. The Service Pipeline, and the Regis-
tration Pipeline.

Each service has its own Service Pipeline, and each registration has its own Registration Pipeline.

Lets take a look at the ‘default’ execution pipeline for a typical service:

Fig. 1: An example resolve pipeline consisting of a Service Pipeline and a Registration Pipeline.

The Service Pipeline is attached to a given service, the thing you use to resolve something. These are common for all
resolves of the service, regardless of the actual registration that supplies an instance.

The Registration Pipeline is attached to each individual registration, and applies to all resolves that invoke that regis-
tration, regardless of the service used to resolve it.

We can use this notion of separated pipelines to attach behavior to either all invocations of a given service (decorators
do this), or to an individual registration (for example, adding lifetime events to the pipeline).

9.16 Pipeline Phases

When we add middleware to a pipeline, we need to specify which phase of the pipeline the middleware should run in.

By specifying a phase, we allow ordering of middleware inside the pipeline, so we are not dependent on the actual
order in which middleware is added.

Here’s the available pipeline phases, broken up into service phases and registration phases.

222 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

Service Pipeline Phases
ResolveRequestStart The start of a resolve request. Custom middleware added to this

phase executes before circular dependency detection.
ScopeSelection In this phase, the lifetime scope selection takes place. If some mid-

dleware needs to change the lifetime scope to resolve against, it hap-
pens here (but bear in mind that the configured Autofac lifetime for
the registration will still take effect).

Decoration In this phase, instance decoration will take place (on the way ‘out’
of the pipeline).

Sharing At the end of this phase, if a shared instance satisfies the request,
the pipeline will stop executing and exit. Add custom middleware to
this phase to choose your own shared instance.

ServicePipelineEnd This phase occurs just before the service pipeline ends (and the reg-
istration pipeline is about to start).

Registration Pipeline Phases
RegistrationPipelineStart This phase occurs at the start of the registration pipeline.
ParameterSelection This phase runs just before Activation, is the recommended point at

which the resolve parameters should be replaced if needed.
Activation The Activation phase is the last phase of a pipeline, where a new

instance of a component is created.

Note: If you attempt to specify a service pipeline phase when adding registration middleware (or vice versa), you will
get an error. You need to use the appropriate phase depending on which pipeline you are adding to.

9.17 Adding Registration Middleware

Lets take a look at how we can insert our own middleware into the registration pipeline when we create a registration,
with a simple ‘Hello World’ lambda middleware that prints some information to the console:

var builder = new ContainerBuilder();

builder.RegisterType<MyImplementation>().As<IMyService>().ConfigurePipeline(p =>
{

// Add middleware at the start of the registration pipeline.
p.Use(PipelinePhase.RegistrationPipelineStart, (context, next) =>
{

Console.WriteLine("Before Activation - Requesting {0}", context.Service);

// Call the next middleware in the pipeline.
next(context);

Console.WriteLine("After Activation - Instantiated {0}", context.Instance);
});

});

You can see that we call the next middleware in the pipeline using the next callback provided, allowing the resolve
operation to continue.

9.17. Adding Registration Middleware 223

Autofac Documentation, Release 7.0.0

You have access to the created instance after next returns. This is because calling next invokes the next middleware
in the pipeline, which also calls next, and so on, until the end of the pipeline, when the instance is activated.

If you don’t invoke that next callback, the pipeline ends, and we return back up to the caller.

9.17.1 Defining Middleware Classes

In addition to providing middleware via a lambda function, you can also define your own middleware classes, and add
instances of those to the pipeline:

class MyCustomMiddleware : IResolveMiddleware
{

public PipelinePhase Phase => PipelinePhase.RegistrationPipelineStart;

public void Execute(ResolveRequestContext context, Action<ResolveRequestContext>␣
→˓next)

{
Console.WriteLine("Before Activation - Requesting {0}", context.Service);

// Call the next middleware in the pipeline.
next(context);

Console.WriteLine("After Activation - Instantiated {0}", context.Instance);
}

}

//

builder.RegisterType<MyImplementation>().As<IMyService>().ConfigurePipeline(p =>
{

p.Use(new MyCustomMiddleware());
});

The two ways of adding middleware behave identically, but defining a class may help if you have complex middleware.

9.17.2 Adding Middleware to all Registrations

If you want to add a piece of middleware to all registrations, you can use the Registered event in the same way you
would have added other shared registration behavior:

// Add MyCustomMiddleware to every registration.
builder.ComponentRegistryBuilder.Registered += (sender, args) =>
{

// The PipelineBuilding event fires just before the pipeline is built, and
// middleware can be added inside it.
args.ComponentRegistration.PipelineBuilding += (sender2 , pipeline) =>
{

pipeline.Use(new MyCustomMiddleware());
};

};

224 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

9.18 ResolveRequestContext

The context object passed into all middleware is an instance of ResolveRequestContext. This object stores the
initial attributes of a resolve request, and any properties updated while the request executes.

You can use this context to:

• Check the service being resolved with the Service property.

• Check the Registration being used to provide the service.

• Get or set the result of the resolve operation with the Instance property.

• Access the parameters of the request with the Parameters property and change those parameters with the
ChangeParameters method.

• Resolve another service (using any of the normal Resolve methods).

Note: ResolveRequestContext is an abstract base class. If you want to write unit tests for your middleware you
can mock it and pass the mock into your middleware implementation.

9.19 Adding Service Middleware

Service middleware is attached to a service, rather than a specific registration. So when we add service middleware we
can add behavior for all resolves of the service, without caring which registration is providing the instance.

You add service middleware directly onto the ContainerBuilder:

var builder = new ContainerBuilder();

// Run some middleware at the very start of the pipeline, before any core Autofac␣
→˓behavior.
builder.RegisterServiceMiddleware<IMyService>(PipelinePhase.ResolveRequestStart,␣
→˓(context, next) =>
{

Console.WriteLine("Requesting Service: {0}", context.Service);

next(context);
});

Just like with registration middleware, you can register middleware classes instead of lambdas:

builder.RegisterServiceMiddleware<IMyService>(new MyServiceMiddleware());

9.18. ResolveRequestContext 225

Autofac Documentation, Release 7.0.0

9.20 Service Middleware Sources

In a similar way to registration sources, you can add a service middleware source if you want to add service middleware
dynamically at runtime.

This can be particularly useful for things like open generic services, where we don’t know the actual service type until
runtime.

You define a service middleware source by implementing IServiceMiddlewareSource, and registering your source
with the ContainerBuilder.

class MyServiceMiddlewareSource : IServiceMiddlewareSource
{

public void ProvideMiddleware(Service service, IComponentRegistryServices␣
→˓availableServices, IResolvePipelineBuilder pipelineBuilder)

{
// Add some middleware to the Sharing phase of every service.
pipelineBuilder.Use(PipelinePhase.Sharing, (context, next) =>
{

Console.WriteLine("I'm on every service!");

next(context);
});

}
}

// ...

builder.RegisterServiceMiddlewareSource(new MyServiceMiddlewareSource());

9.21 Aggregate Services

9.21.1 Introduction

An aggregate service is useful when you need to treat a set of dependencies as one dependency. When a class depends on
several constructor-injected services, or have several property-injected services, moving those services into a separate
class yields a simpler API.

An example is super- and subclasses where the superclass have one or more constructor-injected dependencies. The
subclasses must usually inherit these dependencies, even though they might only be useful to the superclass. With an
aggregate service, the superclass constructor parameters can be collapsed into one parameter, reducing the repetitive-
ness in subclasses. Another important side effect is that subclasses are now insulated against changes in the superclass
dependencies, introducing a new dependency in the superclass means only changing the aggregate service definition.

The pattern and this example are both further elaborated here.

Aggregate services can be implemented by hand, e.g. by building a class with constructor-injected dependencies and
exposing those as properties. Writing and maintaining aggregate service classes and accompanying tests can quickly
get tedious though. The AggregateService extension to Autofac lets you generate aggregate services directly from
interface definitions without having to write any implementation.

226 Chapter 9. Advanced Topics

http://peterspattern.com/dependency-injection-and-class-inheritance

Autofac Documentation, Release 7.0.0

9.21.2 Required References

You can add aggregate service support to your project using the Autofac.Extras.AggregateService NuGet package or
by manually adding references to these assemblies:

• Autofac.dll

• Autofac.Extras.AggregateService.dll

• Castle.Core.dll (from the Castle project)

9.21.3 Getting Started

Lets say we have a class with a number of constructor-injected dependencies that we store privately for later use:

public class SomeController
{
private readonly IFirstService _firstService;
private readonly ISecondService _secondService;
private readonly IThirdService _thirdService;
private readonly IFourthService _fourthService;

public SomeController(
IFirstService firstService,
ISecondService secondService,
IThirdService thirdService,
IFourthService fourthService)

{
_firstService = firstService;
_secondService = secondService;
_thirdService = thirdService;
_fourthService = fourthService;

}
}

To aggregate the dependencies we move those into a separate interface definition and take a dependency on that interface
instead.

public interface IMyAggregateService
{
IFirstService FirstService { get; }
ISecondService SecondService { get; }
IThirdService ThirdService { get; }
IFourthService FourthService { get; }

}

public class SomeController
{
private readonly IMyAggregateService _aggregateService;

public SomeController(IMyAggregateService aggregateService)
{
_aggregateService = aggregateService;

}
}

9.21. Aggregate Services 227

https://nuget.org/packages/Autofac.Extras.AggregateService
http://www.castleproject.org/download/

Autofac Documentation, Release 7.0.0

Finally, we register the aggregate service interface.

using Autofac;
using Autofac.Extras.AggregateService;
//...

var builder = new ContainerBuilder();
builder.RegisterAggregateService<IMyAggregateService>();
builder.Register(/*...*/).As<IFirstService>();
builder.Register(/*...*/).As<ISecondService>();
builder.Register(/*...*/).As<IThirdService>();
builder.Register(/*...*/).As<IFourthService>();
builder.RegisterType<SomeController>();
var container = builder.Build();

The interface for the aggregate service will automatically have an implementation generated for you and the dependen-
cies will be filled in as expected.

9.21.4 How Aggregate Services are Resolved

9.21.5 Properties

Read-only properties mirror the behavior of regular constructor-injected dependencies. The type of each property will
be resolved and cached in the aggregate service when the aggregate service instance is constructed.

Here is a functionally equivalent sample:

class MyAggregateServiceImpl: IMyAggregateService
{
private IMyService _myService;

public MyAggregateServiceImpl(IComponentContext context)
{
_myService = context.Resolve<IMyService>();

}

public IMyService MyService
{
get { return _myService; }

}
}

9.21.6 Methods

Methods will behave like factory delegates and will translate into a resolve call on each invocation. The method return
type will be resolved, passing on any parameters to the resolve call.

A functionally equivalent sample of the method call:

class MyAggregateServiceImpl: IMyAggregateService
{
public ISomeThirdService GetThirdService(string data)

(continues on next page)

228 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
var dataParam = new TypedParameter(typeof(string), data);
return _context.Resolve<ISomeThirdService>(dataParam);

}
}

9.21.7 Property Setters and Void Methods

Property setters and methods without return types does not make sense in the aggregate service. Their presence in the
aggregate service interface does not prevent proxy generation. Calling such methods though will throw an exception.

9.21.8 How It Works

Under the covers, the AggregateService uses DynamicProxy2 from the Castle Project. Given an interface (the aggregate
of services into one), a proxy is generated implementing the interface. The proxy will translate calls to properties and
methods into Resolve calls to an Autofac context.

9.21.9 Performance Considerations

Due to the fact that method calls in the aggregate service pass through a dynamic proxy there is a small but non-zero
amount of overhead on each method call. A performance study on Castle DynamicProxy2 vs other frameworks can be
found here.

9.22 Type Interceptors

Castle.Core, part of the Castle Project, provides a method interception framework called “DynamicProxy.”

The Autofac.Extras.DynamicProxy integration package enables method calls on Autofac components to be inter-
cepted by other components. Common use-cases are transaction handling, logging, and declarative security. You can
use Autofac.Extras.DynamicProxy2 for Autofac versions up to 4.0.0

9.22.1 Enabling Interception

The basic steps to get DynamicProxy integration working are:

• Create Interceptors

• Register Interceptors with Autofac

• Enable Interception on Types

• Associate Interceptors with Types to be Intercepted

9.22. Type Interceptors 229

http://castleproject.org
http://kozmic.pl/2009/03/31/dynamic-proxy-frameworks-comparison-update/
https://github.com/castleproject/Core
http://castleproject.org

Autofac Documentation, Release 7.0.0

Create Interceptors

Interceptors implement the Castle.DynamicProxy.IInterceptor interface. Here’s a simple interceptor example
that logs method calls including inputs and outputs:

public class CallLogger : IInterceptor
{
TextWriter _output;

public CallLogger(TextWriter output)
{
_output = output;

}

public void Intercept(IInvocation invocation)
{
_output.Write("Calling method {0} with parameters {1}... ",
invocation.Method.Name,
string.Join(", ", invocation.Arguments.Select(a => (a ?? "").ToString()).

→˓ToArray()));

invocation.Proceed();

_output.WriteLine("Done: result was {0}.", invocation.ReturnValue);
}

}

Register Interceptors with Autofac

Interceptors must be registered with the container. You can register them either as typed services or as named services.
If you register them as named services, they must be named IInterceptor registrations.

Which of these you choose depends on how you decide to associate interceptors with the types being intercepted.

// Named registration
builder.Register(c => new CallLogger(Console.Out))

.Named<IInterceptor>("log-calls");

// Typed registration
builder.Register(c => new CallLogger(Console.Out));

Enable Interception on Types

When you register a type being intercepted, you have to mark the type at registration time so Autofac knows to wire
up that interception. You do this using the EnableInterfaceInterceptors() and EnableClassInterceptors()
registration extensions.

var builder = new ContainerBuilder();
builder.RegisterType<SomeType>()

.As<ISomeInterface>()

.EnableInterfaceInterceptors();
builder.Register(c => new CallLogger(Console.Out));

(continues on next page)

230 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

(continued from previous page)

var container = builder.Build();
var willBeIntercepted = container.Resolve<ISomeInterface>();

Under the covers, EnableInterfaceInterceptors() creates an interface proxy that performs the interception, while
EnableClassInterceptors() dynamically subclasses the target component to perform interception of virtual meth-
ods.

Both techniques can be used in conjunction with the assembly scanning support, so you can configure batches of
components using the same methods.

Special case: WCF proxy and remoting objects While WCF proxy objects look like interfaces, the
EnableInterfaceInterceptors() mechanism won’t work because, behind the scenes, .NET is actually using a
System.Runtime.Remoting.TransparentProxy object that behaves like the interface. If you want interception on
a WCF proxy, you need to use the InterceptTransparentProxy() method.

var cb = new ContainerBuilder();
cb.RegisterType<TestServiceInterceptor>();
cb.Register(c => CreateChannelFactory()).SingleInstance();
cb
.Register(c => c.Resolve<ChannelFactory<ITestService>>().CreateChannel())
.InterceptTransparentProxy(typeof(IClientChannel))
.InterceptedBy(typeof(TestServiceInterceptor))
.UseWcfSafeRelease();

Associate Interceptors with Types to be Intercepted

To pick which interceptor is associated with your type, you have two choices.

Your first option is to mark the type with an attribute, like this:

// This attribute will look for a TYPED
// interceptor registration:
[Intercept(typeof(CallLogger))]
public class First
{
public virtual int GetValue()
{
// Do some calculation and return a value

}
}

// This attribute will look for a NAMED
// interceptor registration:
[Intercept("log-calls")]
public class Second
{
public virtual int GetValue()
{
// Do some calculation and return a value

}
}

When you use attributes to associate interceptors, you don’t need to specify the interceptor at registration time. You
can just enable interception and the interceptor type will automatically be discovered.

9.22. Type Interceptors 231

Autofac Documentation, Release 7.0.0

// Using the TYPED attribute:
var builder = new ContainerBuilder();
builder.RegisterType<First>()

.EnableClassInterceptors();
builder.Register(c => new CallLogger(Console.Out));

// Using the NAMED attribute:
var builder = new ContainerBuilder();
builder.RegisterType<Second>()

.EnableClassInterceptors();
builder.Register(c => new CallLogger(Console.Out))

.Named<IInterceptor>("log-calls");

The second option is to declare the interceptor at Autofac registration time. You can do this using the
InterceptedBy() registration extension:

var builder = new ContainerBuilder();
builder.RegisterType<SomeType>()

.EnableClassInterceptors()

.InterceptedBy(typeof(CallLogger));
builder.Register(c => new CallLogger(Console.Out));

9.22.2 Tips

Use Public Interfaces

Interface interception requires the interface be public (or, at least, visible to the dynamically generated proxy assembly).
Non-public interface types can’t be intercepted.

If you want to proxy internal interfaces, you must mark the assembly containing the interface with [assembly:
InternalsVisibleTo("DynamicProxyGenAssembly2")].

Use Virtual Methods

Class interception requires the methods being intercepted to be virtual since it uses subclassing as the proxy technique.

Usage with Expressions

Components created using expressions, or those registered as instances, cannot be subclassed by the DynamicProxy2
engine. In these cases, it is necessary to use interface-based proxies.

232 Chapter 9. Advanced Topics

Autofac Documentation, Release 7.0.0

Interface Registrations

To enable proxying via interfaces, the component must provide its services through interfaces only. For best perfor-
mance, all such service interfaces should be part of the registration, i.e. included in As<X>() clauses.

WCF Proxies

As mentioned earlier, WCF proxies and other remoting types are special cases and can’t use standard interface or class
interception. You must use InterceptTransparentProxy() on those types.

Class Interceptors and UsingConstructor

If you are using class interceptors via EnableClassInterceptors() then avoid using the constructor selector
UsingConstructor() with it. When class interception is enabled, the generated proxy adds some new construc-
tors that also take the set of interceptors you want to use. When you specify UsingConstructor() you’ll bypass this
logic and your interceptors won’t be used.

9.22.3 Known Issues

Asynchronous Method Interception

Castle interceptors only expose a synchronous mechanism to intercept methods - there’s no explicit async/await sort
of support. However, given async/await is just syntactic sugar around returning Task objects, you can use Task and
ContinueWith() sorts of methods in your interceptor. This issue shows an example of that. Alternatively, there are
helper libraries that make async work easier.

Castle.Core Versioning

As of Castle.Core 4.2.0, the Castle.Core NuGet package version updates but the assembly version does not. Further, the
assembly version in Castle.Core 4.1.0 matched the package (4.1.0.0) but the 4.2.0 package back-versioned to 4.0.0.0.
In full .NET framework projects any confusion around Castle.Core versioning can be solved by adding an assembly
binding redirect to force use of Castle.Core 4.0.0.0.

Unfortunately, .NET core doesn’t have assembly binding redirects so if you have a transitive dependency on Castle.Core
through a library like Autofac.Extras.DynamicProxy and you also have a direct dependency on Castle.Core, you may
see something like:

System.IO.FileLoadException: Could not load file or assembly 'Castle.Core, Version=4.1.
0.0, Culture=neutral, PublicKeyToken=407dd0808d44fbdc'. The located assembly's manifest
definition does not match the assembly reference. (Exception from HRESULT: 0x80131040)

This happens because of the back-versioned assembly.

Be sure you have the latest Autofac.Extras.DynamicProxy. We do our best to fix as much as possible from the
Autofac end. An update to that and/or Castle.Core may help.

If that doesn’t work, there are two solutions:

One, you can remove your direct Castle.Core reference. The transitive references should sort themselves out.

Two, if you can’t remove your direct reference or removing it doesn’t work. . . all of the direct dependencies you have
will need to update to version 4.2.0 or higher of Castle.Core. You’ll have to file issues with those projects; it’s not
something Autofac can fix for you.

For reference, here’s the Castle.Core issue discussing this challenge.

9.22. Type Interceptors 233

https://github.com/castleproject/Core/issues/107
https://github.com/JSkimming/Castle.Core.AsyncInterceptor
https://github.com/castleproject/Core/issues/288

Autofac Documentation, Release 7.0.0

9.23 Cross-Platform and Native Applications

Tools like Xamarin and .NET Native enable .NET code to be compiled to target specific platforms. However, given
.NET reflection doesn’t necessarily “just work” on all native platforms and auto-wiring of parameters and construction
of objects largely relies on reflection, you sometimes have to do some additional work to get Autofac and DI to work.

9.23.1 Xamarin

When using Xamarin to create an iOS or Android app and the linker is enabled, you may need to explicitly describe
types requiring reflection. The Xamarin Custom Linker Configuration documentation explains how you can notify the
linker to keep certain types and not strip them from the finished product. This boils down to. . .

• Mark types you own with a [Preserve] attribute

• Include a custom XML link description file in your build

A simple link description file looks like this:

<linker>
<assembly fullname="mscorlib">
<type fullname="System.Convert" />

</assembly>
<assembly fullname="My.Own.Assembly">
<type fullname="Foo" preserve="fields">
<method name=".ctor" />

</type>
<namespace fullname="My.Own.Namespace" />
<type fullname="My.Other*" />

</assembly>
<assembly fullname="Autofac" preserve="all"/>

</linker>

Autofac makes use of the System.Convert.ChangeType method in lambda expressions to convert types so including
it in the linker definition is needed. See issue #842 for further discussion.

For additional details on how to structure your Xamarin custom linker configuration file and how to include it in your
build, check out the Xamarin documentation.

Autofac may not be seen as “linker safe” by the Xamarin linker. If the linker gets too aggressive, you may see an
exception like:

The type 'Autofac.Features.Indexed.KeyedServiceIndex'2' does not implement the interface
→˓'Autofac.Features.Indexed.IIndex'2'

[This StackOverflow answer](https://stackoverflow.com/questions/58114288/autofac-build-throws-exception-on-latest-xamarin-ios-when-linker-configured-to)
indicates that you can do one of the following things:

• Set the linker to Don't link or Link Framework SDKs Only (which will increase your application size)

• Add the --linkskip=Autofac argument to the Additional mtouch arguments in iOS Build found in
the iOS project properties.

• Use a linker XML like the one above and make sure the Autofac line with preserve="all" is included.

234 Chapter 9. Advanced Topics

https://developer.xamarin.com/guides/cross-platform/advanced/custom_linking/
https://github.com/autofac/Autofac/issues/842
https://developer.xamarin.com/guides/cross-platform/advanced/custom_linking/
https://stackoverflow.com/questions/58114288/autofac-build-throws-exception-on-latest-xamarin-ios-when-linker-configured-to

Autofac Documentation, Release 7.0.0

9.23.2 .NET Native

.NET Native is a way to compile .NET binaries to native code. It’s used in Universal Windows Platform (UWP) and
Windows Store apps, among others.

When using .NET Native with reflection you may run into exceptions like MissingMetadataException when the
compiler has removed the reflection metadata for types you need.

You can configure .NET Native compilation using a Runtime Directives (rd.xml) file. A simple directive file looks like
this:

<Directives xmlns="http://schemas.microsoft.com/netfx/2013/01/metadata">
<Application>
<Assembly Name="*Application*" Dynamic="Required All" />

</Application>
</Directives>

That directive file tells the compiler to keep all the reflection data for everything in the entire application package.
That’s sort of the “nuclear option” - if you want to make your application package smaller you can be much more
specific about what to include. Refer to the MSDN documentation for more detail.

9.23. Cross-Platform and Native Applications 235

https://msdn.microsoft.com/en-us/library/dn584397(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dn600640(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dn600639(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dn600639(v=vs.110).aspx

Autofac Documentation, Release 7.0.0

236 Chapter 9. Advanced Topics

CHAPTER

TEN

DEBUGGING AND TROUBLESHOOTING

If you’re really having trouble and you haven’t been able to get an answer on StackOverflow you may want to try doing
a little more in-depth debugging/troubleshooting on your own. Here are some tips on doing that.

10.1 Exceptions

The exceptions generated by Autofac really try to point you in the right direction with respect to what could be going
wrong.

Don’t panic! Stop and read what it’s actually telling you. Here are some tips for reading Autofac exceptions that
can save you a lot of time:

• Read the whole message. Exceptions are usually pretty specific and will tell you exactly the thing that’s missing
or wrong. Unfortunately, being specific means it’s hard to be short. Don’t skim the message, actually read it!

• Look at inner exceptions. In large object graphs, sometimes the thing that failed is way down the stack. Autofac
will try hard to bubble the important stuff up to the top, but sometimes it just isn’t possible. Be sure to look at
inner exception messages - they’re not just noise!

• Be aware of the stack trace. In some cases it may _appear_ that Autofac is the cause of the error, but the
problem is in some constructor logic or a delegate that you registered. Follow the whole stack trace to find the
exact location of the problem.

We have some documentation here on the most common exceptions and things to look for to fix them:

10.1.1 The requested service has not been registered

Example Message

The requested service 'MyApp.IMyDependency' has not been registered. To
avoid this exception, either register a component to provide the service,
check for service registration using IsRegistered(), or use the
ResolveOptional() method to resolve an optional dependency.

This error means that Autofac tried to resolve a service based on an application request but that service was not registered
in the container/lifetime scope. The message tells you which service could not be resolved. In the above example, it’s
the MyApp.IMyDependency service that was not found in the lifetime scope.

237

https://stackoverflow.com/questions/tagged/autofac

Autofac Documentation, Release 7.0.0

Troubleshooting

It’s important to remember the difference between a service and a component: A service is the interface or class that
is being exposed, while a component is the concrete class that’s being created to fulfill the service.

In a registration like this. . .

builder.RegisterType<MyComponent>().As<IMyService>();

. . . MyComponent is the component and IMyService is the service.

What the exception is telling you is which service can’t be found. If you look at the stack trace, you should be able to
see what code in the application is trying to resolve that service. You may see this in the context of a larger resolve
chain, for example if you have an object with a constructor that asks for an IMyService and you try to resolve that
object.

The usual cause of this issue is simply a missed registration. Make sure the service is registered. Especially when
using assembly scanning it can be easy to miss some things.

A more subtle sort of problem may also happen, where services with a similar name but different namespace
may be registered. For example, if your application has FirstNamespace.IMyService and SecondNamespace.
IMyService, it can be easy to add some using statements at the top of the class file and a registration for IMyService
and not realize which actual service is getting registered. The code looks like the right thing is getting registered, but
it’s really something else.

Similarly, but more rare, this can happen in a “plugin system” where assemblies get loaded on the fly and scanned
for dependencies - two different assemblies could have the same namespace and interface name. Which one is getting
registered?

Finally, if you’re using the AnyConcreteTypeNotAlreadyRegisteredSource to try to save some time, it may end up auto-
including things in the container that you don’t want registered or don’t use. These extra things may also implement
interfaces you’re trying to resolve, so when you’re resolving services it’ll generate one of these errors due to a missing
dependency and it can be very confusing. Try removing the ACTNARS use and registering things more explicitly,
possibly with assembly scanning instead.

10.1.2 No constructors can be found

Example Message

No constructors on type 'MyApp.MyComponent' can be found with the
constructor finder 'Autofac.Core.Activators.Reflection.DefaultConstructorFinder'.

This error means that Autofac tried to instantiate a component via reflection using its constructor, but the service used
to locate the constructors on the component indicated that the component had no constructors.

In the example message, we see:

• The class that was being created is MyApp.MyComponent.

• The MyApp.MyComponent class is getting searched by Autofac.Core.Activators.Reflection.
DefaultConstructorFinder to see what constructors are available.

• The Autofac.Core.Activators.Reflection.DefaultConstructorFinder is returning zero available
constructors.

238 Chapter 10. Debugging and Troubleshooting

Autofac Documentation, Release 7.0.0

Troubleshooting

This usually happens when a component is registered with Autofac that does not have any constructor marked public,
for example objects that only have internal or private constructors. By default, Autofac only works with public
constructors.

If you have created your own custom IConstructorFinder instance, the message is telling you that your custom
constructor finder is returning an empty array of constructors from the FindConstructors() method. This scenario
(creating a custom IConstructorFinder) is not common, but it happens. You will see the component registration
with a FindConstructorsWith() call to attach the custom constructor finder.

Go look at the component (class) noted in the exception and see if there are any constructors. If there are none at all, then
there should be the compiler-generated default (parameterless) constructor, which is public. If there are constructors
in the class, then the compiler won’t generate that default public parameterless constructor. If there aren’t any public
constructors, that’s going to be the problem.

You can read more about constructor selection here.

10.1.3 None of the constructors found can be invoked

Example Message

None of the constructors found on type 'MyApp.MyComponent' can be invoked
with the available services and parameters:
Cannot resolve parameter 'MyApp.IMyDependency myDep' of constructor
'Void .ctor(MyApp.IMyDependency)'.

This error means that Autofac tried to instantiate a component using its constructor, but one or more of the dependencies
listed as parameters in the constructor cannot be resolved from the container. The message tells you what parameters
could not be resolved.

In the example message, we see:

• The class that was being created is MyApp.MyComponent.

• The MyApp.MyComponent class was getting created with the constructor that has the signature Void .
ctor(MyApp.IMyDependency) - a single parameter constructor.

• The parameter of type MyApp.IMyDependency was not registered in the Autofac container.

Troubleshooting

There are some common reasons for this:

First, the parameter type may represent a service that has not been correctly registered in the container. In
example the case above, it may be that MyApp.IMyDependency has not been registered so it can’t be used as a de-
pendency for other components. Try manually resolving the service in a test. For the example, you might try calling
container.Resolve<MyApp.IMyDependency>() to see what happens. You may think you have it registered but it
really isn’t.

Second, an error occurred while resolving a dependency of the service. In the example case above, it could be
that some logic in the constructor for the MyApp.IMyDependency component encountered an issue. Read through the
inner exceptions to see if there’s more information about what exactly caused the problem.

Finally, you may have a parameter in your constructor that isn’t actually a service and won’t be available in the
container. For example, you usually don’t register plain string or integer values in the container, but if your constructor
takes a value like this, it will fail to run. In that case, you can declare a Parameter on the registration to provide the

10.1. Exceptions 239

Autofac Documentation, Release 7.0.0

extra parameter. We also have an FAQ about injecting configured parameters like connection strings or environment
variables that may help.

If the component has more than one constructor, Autofac by default will try to use the one with the most parameters that
can be fulfilled from the container. If you want, you can specify a constructor yourself that doesn’t take the problem
parameter.

10.1.4 No scope with a matching tag

Example Message

No scope with a tag matching 'AutofacWebRequest' is visible from the scope
in which the instance was requested.

If you see this during execution of a web application, it generally
indicates that a component registered as per-HTTP request is being
requested by a SingleInstance() component (or a similar scenario). Under
the web integration always request dependencies from the dependency
resolver or the request lifetime scope, never from the container itself.

This error means that Autofac tried to resolve a service that was registered as InstancePerMatchingLifetimeScope
and there was no matching lifetime scope.

Troubleshooting

• In an ASP.NET Classic web application (ASP.NET MVC, web forms, etc.) chances are this is due to a missing
per-request lifetime scope. For example, code that tries to run at application startup but use services registered as
per-request will fail. Check out the FAQ on working with per-request scope for more info on how to troubleshoot
that.

• In an ASP.NET Core application, it may be that you’ve registered things as InstancePerRequest. ASP.NET
Core doesn’t have a named request lifetime scope - use InstancePerLifetimeScope instead. See the ASP.NET
Core integration docs for more information.

• If you’ve created custom per-request semantics in your own application, perhaps creating something similar
to InstancePerRequest, likely there is some code registering something as InstancePerRequest but the
service is being resolved outside a request lifetime scope. This can happen if you try to share a registration
module between something that has per-request lifetime scopes and something that doesn’t, like a web app and
a background processing job; or if code runs at application startup before there are requests and tries to use
per-request objects.

• If you register some components with a matching lifetime scope and some without it can cause prob-
lems. For example, say you register one IMyService as a singleton and then register a second IMyService as
InstancePerMatchingLifetimeScope. If you try to resolve IEnumerable<IMyService> outside a match-
ing lifetime scope, you’ll get an error. Even though one of the IMyService could be resolved, not all of them
can. InstancePerMatchingLifetimeScope is not a filter to allow an instance to sometimes be resolved.

240 Chapter 10. Debugging and Troubleshooting

Autofac Documentation, Release 7.0.0

10.2 Diagnostics

10.2.1 Diagnostics

Autofac 6.0 introduced diagnostics support in the form of System.Diagnostics.DiagnosticSource. This allows you to
intercept diagnostic events from Autofac.

Note: Diagnostics aren’t free. You will get better performance if you don’t have a diagnostic listener attached to the
container. Further, tracers like DefaultDiagnosticTracer that generate a full trace of an operation will increase
memory and resource usage as they have to hold onto data during the entire resolve operation in order to generate
a complete trace. It is recommended you only use diagnostics in a non-production environment; or use diagnostics
listeners that handle individual events without tracking full operations.

Quick Start

The easiest way to get started with diagnostics is to use the Autofac.Diagnostics.DefaultDiagnosticTracer
class. This tracer will generate a hierarchical trace of resolution operations that you can use in troubleshooting.

// Build your container as you normally would.
var containerBuilder = new ContainerBuilder();
containerBuilder.RegisterType<Component>().As<IService>();
var container = containerBuilder.Build();

// Create a tracer instance and figure out
// what you want to do when a trace is ready
// to be viewed.
var tracer = new DefaultDiagnosticTracer();
tracer.OperationCompleted += (sender, args) =>
{

Trace.WriteLine(args.TraceContent);
};

// Subscribe to the diagnostics with your tracer.
container.SubscribeToDiagnostics(tracer);

// Resolve things as normal. The tracer
// event will be raised whenever something
// is resolved.
using var scope = container.BeginLifetimeScope();
scope.Resolve<IService>();

If you don’t have direct access to the container (e.g., in ASP.NET Core) you can use a build callback to register the
tracer.

public void ConfigureContainer(ContainerBuilder builder)
{

// Register Autofac things as you normally would.
builder.RegisterModule(new AutofacModule());

// Create a tracer instance and figure out
(continues on next page)

10.2. Diagnostics 241

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticsource?view=netcore-3.1

Autofac Documentation, Release 7.0.0

(continued from previous page)

// what you want to do when a trace is ready
// to be viewed. Note: since you're diagnosing
// the container you probably shouldn't ALSO
// resolve the logger to which the diagnostics
// get written.
var tracer = new DefaultDiagnosticTracer();
tracer.OperationCompleted += (sender, args) =>
{

Console.WriteLine(args.TraceContent);
};

builder.RegisterBuildCallback(c =>
{

var container = c as IContainer;
container.SubscribeToDiagnostics(tracer);

});
}

Default Diagnostic Tracer

The quick start above shows how you can get going with the Autofac.Diagnostics.DefaultDiagnosticTracer.

When the OperationCompleted event gets raised, you’ll get event arguments that provide:

• Operation - the actual resolve operation that completed so you can inspect it if needed.

• OperationSucceeded - a Boolean value indicating whether the contained trace is for a successful or failed
operation.

• TraceContent - the built string that has the full trace of the resolve operation.

Let’s say you have a simple lambda that registers a string.

var builder = new ContainerBuilder();
builder.Register(ctx => "HelloWorld");
var container = builder.Build();

If you resolve a string from that container, the trace will look like this:

Resolve Operation Starting
{
Resolve Request Starting
{
Service: System.String
Component: :System.String

Pipeline:
-> CircularDependencyDetectorMiddleware
-> ScopeSelectionMiddleware
-> SharingMiddleware
-> RegistrationPipelineInvokeMiddleware
-> ActivatorErrorHandlingMiddleware
-> DisposalTrackingMiddleware
-> :System.String

(continues on next page)

242 Chapter 10. Debugging and Troubleshooting

Autofac Documentation, Release 7.0.0

(continued from previous page)

<- :System.String
<- DisposalTrackingMiddleware

<- ActivatorErrorHandlingMiddleware
<- RegistrationPipelineInvokeMiddleware

<- SharingMiddleware
<- ScopeSelectionMiddleware

<- CircularDependencyDetectorMiddleware
}
Resolve Request Succeeded; result instance was HelloWorld

}
Operation Succeeded; result instance was HelloWorld

As you can see, the trace is very detailed - you can see the full middleware pipeline that the resolve operation went
through, you’ll see the activator (a delegate, in this case), and you’ll see the resulting instance.

This can really help when trying to troubleshoot complex resolve issues, though the amount of information can be
overwhelming the more complex the trace gets.

An error trace will include where the error occurred and indicate failure:

Resolve Operation Starting
{
Resolve Request Starting
{
Service: System.String
Component: :System.String

Pipeline:
-> CircularDependencyDetectorMiddleware
-> ScopeSelectionMiddleware
-> SharingMiddleware
-> RegistrationPipelineInvokeMiddleware
-> ActivatorErrorHandlingMiddleware
-> DisposalTrackingMiddleware
-> :System.String
X- :System.String

X- DisposalTrackingMiddleware
X- ActivatorErrorHandlingMiddleware

X- RegistrationPipelineInvokeMiddleware
X- SharingMiddleware

X- ScopeSelectionMiddleware
X- CircularDependencyDetectorMiddleware

}
Resolve Request FAILED
System.DivideByZeroException: Attempted to divide by zero.
at MyProject.MyNamespace.MyMethod.<>c.<GenerateSimpleTrace>b__6_

→˓0(IComponentContext x) in /path/to/MyCode.cs:line 39
at Autofac.RegistrationExtensions.<>c__DisplayClass39_0`1.<Register>b__

→˓0(IComponentContext c, IEnumerable`1 p)
at Autofac.Builder.RegistrationBuilder.<>c__DisplayClass0_0`1.<ForDelegate>b__

→˓0(IComponentContext c, IEnumerable`1 p)
at Autofac.Core.Activators.Delegate.DelegateActivator.

→˓ActivateInstance(IComponentContext context, IEnumerable`1 parameters)
(continues on next page)

10.2. Diagnostics 243

Autofac Documentation, Release 7.0.0

(continued from previous page)

at Autofac.Core.Activators.Delegate.DelegateActivator.<ConfigurePipeline>b__2_
→˓0(ResolveRequestContext ctxt, Action`1 next)

at Autofac.Core.Resolving.Middleware.DelegateMiddleware.
→˓Execute(ResolveRequestContext context, Action`1 next)

at Autofac.Core.Resolving.Pipeline.ResolvePipelineBuilder.<>c__DisplayClass14_0.
→˓<BuildPipeline>b__1(ResolveRequestContext ctxt)

at Autofac.Core.Resolving.Middleware.DisposalTrackingMiddleware.
→˓Execute(ResolveRequestContext context, Action`1 next)

at Autofac.Core.Resolving.Pipeline.ResolvePipelineBuilder.<>c__DisplayClass14_0.
→˓<BuildPipeline>b__1(ResolveRequestContext ctxt)

at Autofac.Core.Resolving.Middleware.ActivatorErrorHandlingMiddleware.
→˓Execute(ResolveRequestContext context, Action`1 next)
}
Operation FAILED

See how the return trip through the middleware changed to a X- in there? We know the error happened while executing
the lambda. You can use these hints to see exactly where in the pipeline things are failing.

DOT Graph Tracer

In addition to the DefaultDiagnosticTracer we provide a graphing tracer in the Autofac.Diagnostics.
DotGraph package.

If you add a reference to this package, you’ll have the ability to trace out full dependency trees in a visual fashion using
DOT language. You can then render images with a tool like Graphviz.

First, just like with the DefaultDiagnosticTracer, register it with your container. This time the trace output will
be a DOT graph.

// Build your container as you normally would.
var containerBuilder = new ContainerBuilder();
containerBuilder.RegisterType<Component>().As<IService>();
var container = containerBuilder.Build();

// Create a DOT graph tracer instance. The
// trace content will be DOT graph format.
var tracer = new DotDiagnosticTracer();
tracer.OperationCompleted += (sender, args) =>
{

// Writing the DOT trace to a file will let you render
// it to a graph with Graphviz later, but this is
// NOT A GOOD COPY/PASTE EXAMPLE. You'll want to do
// things in an async fashion with good error handling.
var path = Path.Combine(Path.GetTempPath(), $"{Guid.NewGuid()}.dot");
using var file = new StreamWriter(path);
file.WriteLine(args.TraceContent);

};

// Subscribe to the diagnostics with your tracer.
container.SubscribeToDiagnostics(tracer);

// Resolve things as normal. The tracer
(continues on next page)

244 Chapter 10. Debugging and Troubleshooting

https://graphviz.org/doc/info/lang.html
https://graphviz.org/

Autofac Documentation, Release 7.0.0

(continued from previous page)

// event will be raised whenever something
// is resolved.
using var scope = container.BeginLifetimeScope();
scope.Resolve<IService>();

Let’s say you have a simple lambda that registers a string.

var builder = new ContainerBuilder();
builder.Register(ctx => "HelloWorld");
var container = builder.Build();

The output from the DOT graph tracer will look like this (and, yes, it’s messy):

digraph G {
label=<string
Operation #1>;
labelloc=t
na58baa0161f74ca8a74d3481aff7d182 [shape=component,label=<
<table border='0' cellborder='0' cellspacing='0'>
<tr><td port='nb569aeb076c94321a3c17b56bf16fd2c'>string</td></tr>
<tr><td>Component: :string</td></tr>
</table>
>];
}

However, let’s say you save that to a file and then convert it to a PNG with Graphviz:

dot -Tpng -O my-trace.dot

The graphic output looks like this:

Fig. 1: Simple DOT graph for a string resolve.

Now it’s looking interesting. We can see the resolve was for a string and we can see the request was fulfilled by a
lambda.

But what about something more complex? Here’s an example of what a complex resolution graph might look like.

Looking at this graph, it tells us a lot of things:

• Both the IHandler<string> and the IService1 that was resolved need an IService2 and it was fulfilled by
a single instance. That means it’s either a singleton or maybe an instance-per-lifetime-scope.

• Both the IService1 and IService2 need an IService3 and a new one was created for each instance.

• IService3 is decorated - see how it chains down to a node that looks more like a box? That indicates there’s a
decorator in play. You can see the component (the decorator) and the target (the thing being decorated) listed in
that box.

• IService3 takes in an ILifetimeScope constructor parameter.

10.2. Diagnostics 245

Autofac Documentation, Release 7.0.0

Fig. 2: DOT graph for a complex resolve.

246 Chapter 10. Debugging and Troubleshooting

Autofac Documentation, Release 7.0.0

That last one - the ILifetimeScope parameter - means IService3 might do some service location (manually resolve
something) inside the code. If you really want to know the full chain, you might have to correlate this graph with others.
But how?

Notice at the top there’s an Operation #1 counter - this counter increments for every resolve operation passing through
the tracer. You can look for traces that have a larger number and do a little manual correlation. Unfortunately, this is the
best we can offer because each resolution is entirely independent - service location breaks the chain. You can’t assume
all resolves associated with a lifetime scope are correlated because, for example, maybe all the resolutions for an entire
application come from a single scope.

Errors will also be highlighted so you can see where the error occurs.

Fig. 3: DOT graph for an error during a resolve.

In this case, you can see the trace all the way down to the location where it failed is highlighted red and bold. You can
also see the exception type and message.

10.2. Diagnostics 247

Autofac Documentation, Release 7.0.0

Custom Tracers

Using System.Diagnostics.DiagnosticSource in Autofac allows you to create your own custom tracer that can
handle various events and generate the data that interests you.

Events in the overall pipeline happen in this order:

• Operation start

– Resolve request start

∗ Middleware start

∗ Middleware success / fail

– Resolve request success / fail

• Operation success / fail

Middleware may start additional resolve requests; and there’s more than one middleware item in the pipeline. You can
dig deeper on this in the Pipelines page.

If you want to trace an entire operation from end to end, similar to the DefaultDiagnosticTracer, you can start with
the Autofac.Diagnostics.OperationDiagnosticTracerBase<TContent> class. This is the class on which the
DefaultDiagnosticTracer is based. It is intentionally wired up to listen to all resolve events, from start to end, and
track a full operation at a time. Your best example of this is to look at the source code for DefaultDiagnosticTracer.
Given there are a lot of events to handle, there’s a lot of data to capture.

You can take a little more control and trace only certain events by using Autofac.Diagnostics.
DiagnosticTracerBase. This is a DiagnosticListener that adds some strongly-typed parsing to the events to
help you write a little less code. Here’s a tracer that logs to console when a resolve operation starts:

Here’s an example tracer that traces full operations and just keeps a simple stack of data similar to the
DefaultDiagnosticTracer but far less fancy.

public class ConsoleOperationTracer : DiagnosticTracerBase
{

public ConsoleOperationTracer()
: base()

{
EnableBase("Autofac.Operation.Start");

}

protected override void OnOperationStart(OperationStartDiagnosticData data)
{

Console.WriteLine("Operation starting.");
}

}

Now you can use your custom tracer. It won’t raise any event, but it’ll log what you want.

// Build your container as you normally would.
var containerBuilder = new ContainerBuilder();
containerBuilder.RegisterType<Component>().As<IService>();
var container = containerBuilder.Build();

// Subscribe to the diagnostics with your tracer.
container.SubscribeToDiagnostics<ConsoleOperationTracer>();

248 Chapter 10. Debugging and Troubleshooting

https://github.com/autofac/Autofac/blob/dca791ca0dbd1aa1cb0ad821539381df403d6d52/src/Autofac/Diagnostics/DefaultDiagnosticTracer.cs

Autofac Documentation, Release 7.0.0

If you want even more control you can use the standard IObserver<KeyValuePair<string, object>> support
that System.Diagnostics.DiagnosticListener uses by default. Here’s that same console logging listener in that
format:

public class ConsoleOperationTracer : IObserver<KeyValuePair<string, object>>
{

public void OnCompleted()
{
}

public void OnError(Exception error)
{
}

public void OnNext(KeyValuePair<string, object> value)
{

// The tracer will only be called on operation start
// because that's how we're going to register it.
//
// value.Value is an OperationStartDiagnosticData when
// the operation start event is raised, but this logger
// doesn't use that.
Console.WriteLine("Operation starting.");

}
}

As you can see, you can write some very tight, performant code if you get down to the metal.

When you get this low, you can control the subscriptions for your events separately from the tracer. You have to register
your tracer directly with the container DiagnosticSource.

// Subscribe to the diagnostics with your tracer.
// Note the lambda that tells how to determine if
// the tracer should get an event.
var tracer = new ConsoleOperationTracer();
container.DiagnosticSource.Subscribe(tracer, e => e == "Autofac.Operation.Start");

Symbols and Sources

Autofac packages have been updated to use Source Link so you can debug right from your code into the Autofac source.
Packages may have the symbols right inside or they may be in the NuGet Symbol Server.

In Visual Studio, there’s an option to enable searching the NuGet symbol server. See the documentation from Microsoft
explaining how to configure Visual Studio to make symbol servers work.

In VS Code, you may need to set the debugging options up in settings.json or launch.json.

A settings.json block to enable symbols during unit test debugging looks like this:

{
"csharp.unitTestDebuggingOptions": {
"symbolOptions": {
"searchMicrosoftSymbolServer": true,
"searchNuGetOrgSymbolServer": true

(continues on next page)

10.2. Diagnostics 249

https://github.com/dotnet/sourcelink
https://docs.microsoft.com/en-us/nuget/create-packages/symbol-packages-snupkg#nugetorg-symbol-server
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger

Autofac Documentation, Release 7.0.0

(continued from previous page)

}
}

}

To launch your application with symbols enabled, launch.json might look something like this:

{
"configurations": [

{
"console": "internalConsole",
"cwd": "${workspaceFolder}/src/MyProject",
"env": {
"ASPNETCORE_ENVIRONMENT": "Development",
"ASPNETCORE_URLS": "https://localhost:5000",
"COMPlus_ReadyToRun": "0",
"COMPlus_ZapDisable": "1"

},
"justMyCode": false,
"name": "Launch with SourceLink (Development)",
"preLaunchTask": "build",
"program": "${workspaceFolder}/src/MyProject/bin/Debug/net6.0/MyProject.dll",
"request": "launch",
"serverReadyAction": {
"action": "openExternally",
"pattern": "\\bNow listening on:\\s+(https?://\\S+)",
"uriFormat": "%s"

},
"stopAtEntry": false,
"suppressJITOptimizations": true,
"symbolOptions": {
"searchMicrosoftSymbolServer": true,
"searchNuGetOrgSymbolServer": true

},
"type": "coreclr"

}
],
"version": "0.2.0"

}

Autofac 6.0 introduced diagnostics support in the form of System.Diagnostics.DiagnosticSource. This allows you to
intercept diagnostic events from Autofac.

We have a page explaining how to hook into diagnostics and do deeper troubleshooting.

250 Chapter 10. Debugging and Troubleshooting

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.diagnosticsource?view=netcore-3.1

Autofac Documentation, Release 7.0.0

10.3 Support

We have a page outlining how to get support.

10.3. Support 251

Autofac Documentation, Release 7.0.0

252 Chapter 10. Debugging and Troubleshooting

CHAPTER

ELEVEN

EXAMPLES

11.1 Examples Repository

Autofac provides a GitHub repository full of examples to illustrate how various integrations work. The documentation
on this site links to specific relevant examples where possible.

Check out that repo for a better understanding of Autofac in action.

11.2 log4net Integration Middleware

While there is no specific assembly for log4net support, you can easily inject log4net.ILog values using a simple
piece of middleware, and a very small custom module to add that middleware to all your registrations.

The Log4NetMiddleware is also a good example of how to use pipeline middleware.

Here’s the sample middleware that injects ILog parameters based on the type of the component being activated. This
sample middleware handles both constructor and property injection.

public class Log4NetMiddleware : IResolveMiddleware
{

public PipelinePhase Phase => PipelinePhase.ParameterSelection;

public void Execute(ResolveRequestContext context, Action<ResolveRequestContext>␣
→˓next)

{
// Add our parameters.
context.ChangeParameters(context.Parameters.Union(

new[]
{
new ResolvedParameter(

(p, i) => p.ParameterType == typeof(ILog),
(p, i) => LogManager.GetLogger(p.Member.DeclaringType)

),
}));

// Continue the resolve.
next(context);

// Has an instance been activated?
if (context.NewInstanceActivated)

(continues on next page)

253

https://github.com/autofac/Examples
https://github.com/autofac/Examples

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
var instanceType = context.Instance.GetType();

// Get all the injectable properties to set.
// If you wanted to ensure the properties were only UNSET properties,
// here's where you'd do it.
var properties = instanceType

.GetProperties(BindingFlags.Public | BindingFlags.Instance)

.Where(p => p.PropertyType == typeof(ILog) && p.CanWrite && p.
→˓GetIndexParameters().Length == 0);

// Set the properties located.
foreach (var propToSet in properties)
{

propToSet.SetValue(context.Instance, LogManager.GetLogger(instanceType),␣
→˓null);

}
}

}
}

Performance Note: At the time of this writing, calling LogManager.GetLogger(type) has a slight performance
hit as the internal log manager locks the collection of loggers to retrieve the appropriate logger. An enhancement to
the middleware would be to add caching around logger instances so you can reuse them without the lock hit in the
LogManager call.

Here’s the simple MiddlewareModule (not specific to Logging), that adds a single middleware instance to the pipeline
for every registration.

// Adds a piece of middleware to every registration.
public class MiddlewareModule : Autofac.Module
{

private readonly IResolveMiddleware middleware;

public MiddlewareModule(IResolveMiddleware middleware)
{

this.middleware = middleware;
}

protected override void AttachToComponentRegistration(IComponentRegistryBuilder␣
→˓componentRegistryBuilder, IComponentRegistration registration)

{
// Attach to the registration's pipeline build.
registration.PipelineBuilding += (sender, pipeline) =>
{

// Add our middleware to the pipeline.
pipeline.Use(middleware);

};
}

}

254 Chapter 11. Examples

CHAPTER

TWELVE

FREQUENTLY ASKED QUESTIONS

12.1 How do I work with per-request lifetime scope?

In applications that have a request/response semantic (e.g., ASP.NET MVC or Web API), you can register dependencies
to be “instance-per-request,” meaning you will get one instance of the given dependency for each request handled by
the application and that instance will be tied to the individual request lifecycle.

In order to understand per-request lifetime, you should have a good understanding of how dependency lifetime scopes
work in general. Once you understand how dependency lifetime scopes work, per-request lifetime scope is easy.

• Note on ASP.NET Core

• Registering Dependencies as Per-Request

• How Per-Request Lifetime Works

• Sharing Dependencies Across Apps Without Requests

• Testing with Per-Request Dependencies

– Faking an MVC Request Scope

– Faking a Web API Request Scope

• Troubleshooting Per-Request Dependencies

– No Scope with a Tag Matching ‘AutofacWebRequest’

– No Per-Request Filter Dependencies in Web API

• Implementing Custom Per-Request Semantics

12.1.1 Note on ASP.NET Core

As noted in the ASP.NET Core integration docs, ASP.NET Core doesn’t have a specific per-request scope. Every-
thing is registered InstancePerLifetimeScope() instead of InstancePerRequest() for ASP.NET Core.

255

Autofac Documentation, Release 7.0.0

12.1.2 Registering Dependencies as Per-Request

When you want a dependency registered as per-request, use the InstancePerRequest() registration extension:

var builder = new ContainerBuilder();
builder.RegisterType<ConsoleLogger>()

.As<ILogger>()

.InstancePerRequest();
var container = builder.Build();

You’ll get a new instance of the component for every inbound request for your application. The handling of the creation
of the request-level lifetime scope and the cleanup of that scope are generally dealt with via the Autofac application
integration libraries for your application type.

12.1.3 How Per-Request Lifetime Works

Per-request lifetime makes use of tagged lifetime scopes and the “Instance Per Matching Lifetime Scope” mechanism.

Autofac application integration libraries hook into different application types and, on an inbound request, they create
a nested lifetime scope with a “tag” that identifies it as a request lifetime scope:

+--------------------------+
| Autofac Container |
| |
| +----------------------+ |
| | Tagged Request Scope | |
| +----------------------+ |
+--------------------------+

When you register a component as InstancePerRequest(), you’re telling Autofac to look for a lifetime scope that
is tagged as the request scope and to resolve the component from there. That way if you have unit-of-work lifetime
scopes that take place during a single request, the per-request dependency will be shared during the request:

+--+
| Autofac Container |
| |
| +--+ |
	Tagged Request Scope					
	+--------------------+ +--------------------+					
		Unit of Work Scope		Unit of Work Scope		
	+--------------------+ +--------------------+					
+--+						
+--+

The request scope is tagged with a constant value Autofac.Core.Lifetime.MatchingScopeLifetimeTags.
RequestLifetimeScopeTag, which equates to the string AutofacWebRequest. If the request lifetime scope isn’t
found, you’ll get a DependencyResolutionException that tells you the request lifetime scope isn’t found.

There are tips on troubleshooting this exception below in the Troubleshooting Per-Request Dependencies section.

256 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

12.1.4 Sharing Dependencies Across Apps Without Requests

A common situation you might see is that you have a single Autofac module that performs some dependency registrations
and you want to share that module between two applications - one that has a notion of per-request lifetime (like a Web
API application) and one that doesn’t (like a console app or Windows Service).

How do you register dependencies as per-request and allow registration sharing?

There are a couple of potential solutions to this problem.

Option 1: Change your InstancePerRequest() registrations to be InstancePerLifetimeScope(). Most ap-
plications don’t create their own nested unit-of-work lifetime scopes; instead, the only real child lifetime scope
that gets created is the request lifetime. If this is the case for your application, then InstancePerRequest() and
InstancePerLifetimeScope() become effectively identical. You will get the same behavior. In the application that
doesn’t support per-request semantics, you can create child lifetime scopes as needed for component sharing.

var builder = new ContainerBuilder();

// If your application does NOT create its own child
// lifetime scopes anywhere, then change this...
//
// builder.RegisterType<ConsoleLogger>()
// .As<ILogger>()
// .InstancePerRequest();
//
// ..to this:
builder.RegisterType<ConsoleLogger>()

.As<ILogger>()

.InstancePerLifetimeScope();
var container = builder.Build();

Option 2: Set up your registration module to take a parameter and indicate which lifetime scope registration type to
use.

public class LoggerModule : Module
{
private bool _perRequest;
public LoggerModule(bool supportPerRequest)
{
this._perRequest = supportPerRequest;

}

protected override void Load(ContainerBuilder builder)
{
var reg = builder.RegisterType<ConsoleLogger>().As<ILogger>();
if(this._perRequest)
{
reg.InstancePerRequest();

}
else
{
reg.InstancePerLifetimeScope();

}
}

}
(continues on next page)

12.1. How do I work with per-request lifetime scope? 257

Autofac Documentation, Release 7.0.0

(continued from previous page)

// Register the module in each application and pass
// an appropriate parameter indicating if the app supports
// per-request or not, like this:
// builder.RegisterModule(new LoggerModule(true));

Option 3: A third, but more complex, option is to implement custom per-request semantics in the application that
doesn’t naturally have these semantics. For example, a Windows Service doesn’t necessarily have per-request semantics,
but if it’s self-hosting a custom service that takes requests and provides responses, you could add per-request lifetime
scopes around each request and enable support of per-request dependencies. You can read more about this in the
Implementing Custom Per-Request Semantics section.

12.1.5 Testing with Per-Request Dependencies

If you have an application that registers per-request dependencies, you may want to re-use the registration logic to set
up dependencies in unit tests. Of course, you’ll find that your unit tests don’t have request lifetime scopes available,
so you’ll end up with a DependencyResolutionException that indicates the AutofacWebRequest scope can’t be
found. How do you use the registrations in a testing environment?

Option 1: Create some custom registrations for each specific test fixture. Particularly if you’re in a unit test environment,
you probably shouldn’t be wiring up the whole real runtime environment for the test - you should have test doubles for
all the external required dependencies instead. Consider mocking out the dependencies and not actually doing the full
shared set of registrations in the unit test environment.

Option 2: Look at the choices for sharing registrations in the Sharing Dependencies Across Apps Without Requests
section. Your unit test could be considered “an application that doesn’t support per-request registrations” so using a
mechanism that allows sharing between application types might be appropriate.

Option 3: Implement a fake “request” in the test. The intent here would be that before the test runs, a real Autofac
lifetime scope with the AutofacWebRequest label is created, the test is run, and then the fake “request” scope is
disposed - as though a full request was actually run. This is a little more complex and the method differs based on
application type.

Faking an MVC Request Scope

The Autofac ASP.NET MVC integration uses an ILifetimeScopeProvider implementation along with the
AutofacDependencyResolver to dynamically create a request scope as needed. To fake out the MVC request scope,
you need to provide a test ILifetimeScopeProvider that doesn’t involve the actual HTTP request. A simple version
might look like this:

public class SimpleLifetimeScopeProvider : ILifetimeScopeProvider
{
private readonly IContainer _container;
private ILifetimeScope _scope;

public SimpleLifetimeScopeProvider(IContainer container)
{
this._container = container;

}

public ILifetimeScope ApplicationContainer
{

(continues on next page)

258 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

get { return this._container; }
}

public void EndLifetimeScope()
{
if (this._scope != null)
{
this._scope.Dispose();
this._scope = null;

}
}

public ILifetimeScope GetLifetimeScope(Action<ContainerBuilder> configurationAction)
{
if (this._scope == null)
{
this._scope = (configurationAction == null)

? this.ApplicationContainer.BeginLifetimeScope(MatchingScopeLifetimeTags.
→˓RequestLifetimeScopeTag)

: this.ApplicationContainer.BeginLifetimeScope(MatchingScopeLifetimeTags.
→˓RequestLifetimeScopeTag, configurationAction);

}

return this._scope;
}

}

When creating your AutofacDependencyResolver from your built application container, you’d manually specify
your simple lifetime scope provider. Make sure you set up the resolver before your test runs, then after the test runs you
need to clean up the fake request scope. In NUnit, it’d look like this:

private IDependencyResolver _originalResolver = null;
private ILifetimeScopeProvider _scopeProvider = null;

[TestFixtureSetUp]
public void TestFixtureSetUp()
{
// Build the container, then...
this._scopeProvider = new SimpleLifetimeScopeProvider(container);
var resolver = new AutofacDependencyResolver(container, provider);
this._originalResolver = DependencyResolver.Current;
DependencyResolver.SetResolver(resolver);

}

[TearDown]
public void TearDown()
{
// Clean up the fake 'request' scope.
this._scopeProvider.EndLifetimeScope();

}

[TestFixtureTearDown]
(continues on next page)

12.1. How do I work with per-request lifetime scope? 259

Autofac Documentation, Release 7.0.0

(continued from previous page)

public void TestFixtureTearDown()
{
// If you're mucking with statics, always put things
// back the way you found them!
DependencyResolver.SetResolver(this._originalResolver);

}

Faking a Web API Request Scope

In Web API, the request lifetime scope is actually dragged around the system along with the inbound
HttpRequestMessage as an ILifetimeScope object. To fake out a request scope, you just have to get the
ILifetimeScope attached to the message you’re processing as part of your test.

During test setup, you should build the dependency resolver as you would in the application and associate that with an
HttpConfiguration object. In each test, you’ll create the appropriate HttpRequestMessage to process based on
the use case being tested, then use built-in Web API extension methods to attach the configuration to the message and
get the request scope from the message.

In NUnit it’d look like this:

private HttpConfiguration _configuration = null;

[TestFixtureSetUp]
public void TestFixtureSetUp()
{
// Build the container, then...
this._configuration = new HttpConfiguration
{
DependencyResolver = new AutofacWebApiDependencyResolver(container)

}
}

[TestFixtureTearDown]
public void TestFixtureTearDown()
{
// Clean up - automatically handles
// cleaning up the dependency resolver.
this._configuration.Dispose();

}

[Test]
public void MyTest()
{
// Dispose of the HttpRequestMessage to dispose of the
// request lifetime scope.
using(var message = CreateTestHttpRequestMessage())
{
message.SetConfiguration(this._configuration);

// Now do your test. Use the extension method
// message.GetDependencyScope()
// to get the request lifetime scope from Web API.

(continues on next page)

260 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

}
}

12.1.6 Troubleshooting Per-Request Dependencies

There are a few gotchas when you’re working with per-request dependencies. Here’s some troubleshooting help.

No Scope with a Tag Matching ‘AutofacWebRequest’

A very common exception people see when they start working with per-request lifetime scope is:

No scope with a tag matching 'AutofacWebRequest' is visible from the scope
in which the instance was requested.

If you see this during execution of a web application, it generally
indicates that a component registered as per-HTTP request is being
requested by a SingleInstance() component (or a similar scenario). Under
the web integration always request dependencies from the dependency
resolver or the request lifetime scope, never from the container itself.

What this means is that the application tried to resolve a dependency that is registered as InstancePerRequest()
but there wasn’t any request lifetime in place.

Common causes for this include:

• Application registrations are being shared across application types.

• A unit test is running with real application registrations but isn’t simulating per-request lifetimes.

• You have a component that lives longer than one request but it takes a dependency that only lives for one request.
For example, a singleton component that takes a service registered as per-request.

• Code is running during application startup (e.g., in an ASP.NET Global.asax) that uses dependency resolution
when there isn’t an active request yet.

• Code is running in a “background thread” (where there’s no request semantics) but is trying to call the ASP.NET
MVC DependencyResolver to do service location.

Tracking down the source of the issue can be troublesome. In many cases, you might look at what is being resolved
and see that the component being resolved is not registered as per-request and the dependencies that component uses
are also not registered as per-request. In cases like this, you may need to go all the way down the dependency chain.
The exception could be coming from something deep in the dependency chain. Usually a close examination of the call
stack can help you. In cases where you are doing dynamic assembly scanning to locate modules to register, the source
of the troublesome registration may not be immediately obvious.

As you analyze the registrations in the problem dependency chain, look at the lifetime scopes for which they’re reg-
istered. If you have a component registered as SingleInstance() but it (maybe indirectly) consumes a component
registered as InstancePerRequest(), that’s a problem. The SingleInstance() component will grab its depen-
dencies when it’s resolved the first time and never let go. If that happens at app startup or in a background thread where
there’s no current request, you’ll see this exception. You may need to adjust some component lifetime scopes. Again,
it’s really good to know how dependency lifetime scopes work in general.

Anyway, somewhere along the line, something is looking for a per-request lifetime scope and it’s not being found.

If you are trying to share registrations across application types, check out the Sharing Dependencies Across Apps
Without Requests section.

12.1. How do I work with per-request lifetime scope? 261

Autofac Documentation, Release 7.0.0

If you are trying to unit test with per-request dependencies, the sections Testing with Per-Request Dependencies and
Sharing Dependencies Across Apps Without Requests can give you some tips.

If you have application startup code or a background thread in an ASP.NET MVC app trying to use
DependencyResolver.Current - the AutofacDependencyResolver requires a web context to resolve things.
When you try to resolve something from the resolver, it’s going to try to spin up a per-request lifetime scope
and store it along with the current HttpContext. If there isn’t a current context, things will fail. Accessing
AutofacDependencyResolver.Current will not get you around that - the way the current resolver property works,
it locates itself from the current web request scope. (It does this to allow working with applications like Glimpse and
other instrumentation mechanisms.)

For application startup code or background threads, you may need to look at a different service locator mechanism like
Common Service Locator to bypass the need for per-request scope. If you do that, you’ll also need to check out the
Sharing Dependencies Across Apps Without Requests section to update your component registrations so they also don’t
necessarily require a per-request scope.

No Per-Request Filter Dependencies in Web API

If you are using the Web API integration and AutofacWebApiFilterProvider to do dependency injection into your
action filters, you may notice that dependencies in filters are resolved one time only and not on a per-request basis.

This is a shortcoming in Web API. The Web API internals create filter instances and then cache them, never to be
created again. This removes any “hooks” that might otherwise have existed to do anything on a per-request basis in a
filter.

If you need to do something per-request in a filter, you will need to use service location and manually get the request
lifetime scope from the context in your filter. For example, an ActionFilterAttribute might look like this:

public class LoggingFilterAttribute : ActionFilterAttribute
{
public override void OnActionExecuting(HttpActionContext context)
{
var logger = context.Request.GetDependencyScope().GetService(typeof(ILogger)) as␣

→˓ILogger;
logger.Log("Executing action.");

}
}

Using this service location mechanism, you wouldn’t even need the AutofacWebApiFilterProvider - you can do
this even without using Autofac at all.

12.1.7 Implementing Custom Per-Request Semantics

You may have a custom application that handles requests - like a Windows Service application that takes requests,
performs some work, and provides some output. In cases like that, you can implement a custom mechanism that
provides the ability to register and resolve dependencies on a per-request basis if you structure your application properly.
The steps you would take are identical to the steps seen in other application types that naturally support per-request
semantics.

• Build the container at application start. Make your registrations, build the container, and store a reference to
the global container for later use.

• When a logical request is received, create a request lifetime scope. The request lifetime scope should be tagged
with the tag Autofac.Core.Lifetime.MatchingScopeLifetimeTags.RequestLifetimeScopeTag so
you can use standard registration extension methods like InstancePerRequest(). This will also enable you
to share registration modules across application types if you so desire.

262 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

• Associate request lifetime scope with the request. This means you need the ability to get the request scope
from within the request and not have a single, static, global variable with the “request scope” - that’s a threading
problem. You either need a construct like HttpContext.Current (as in ASP.NET) or OperationContext.
Current (as in WCF); or you need to store the request lifetime along with the actual incoming request information
(like Web API).

• Dispose of the request lifetime after the request is done. After the request has been processed and the response
is sent, you need to call IDisposable.Dispose() on the request lifetime scope to ensure memory is cleaned
up and service instances are released.

• Dispose of the container at application end. When the application is shutting down, call IDisposable.
Dispose() on the global application container to ensure any managed resources are properly disposed and
connections to databases, etc. are shut down.

How exactly you do this depends on your application, so an “example” can’t really be provided. A good way to see the
pattern is to look at the source for the integration libraries for various app types like MVC and Web API to see how
those are done. You can then adopt patterns and adapt accordingly to fit your application’s needs.

This is a very advanced process. You can pretty easily introduce memory leaks by not properly disposing of things or
create threading problems by not correctly associating request lifetimes with requests. Be careful if you go down this
road and do a lot of testing and profiling to make sure things work as you expect.

12.2 How do I pick a service implementation by context?

There are times when you may want to register multiple components that all expose the same service but you want to
pick which component is used in different instances.

For this question, let’s imagine a simple order processing system. In this system, we have. . .

• A shipping processor that orchestrates the physical mailing of the order contents.

• A notification processor that sends an alert to a user when their order status changes.

In this simple system, the shipping processor might need to take different “plugins” to allow order delivery by different
means - postal service, UPS, FedEx, and so on. The notification processor might also need different “plugins” to allow
notifications by different means, like email or SMS text.

Your initial class design might look like this:

// This interface lets you send some content
// to a specified destination.
public interface ISender
{
void Send(Destination dest, Content content);

}

// We can implement the interface for different
// "sending strategies":
public class PostalServiceSender : ISender { ... }
public class EmailNotifier : ISender { ... }

// The shipping processor sends the physical order
// to a customer given a shipping strategy (postal service,
// UPS, FedEx, etc.).
public class ShippingProcessor
{

(continues on next page)

12.2. How do I pick a service implementation by context? 263

Autofac Documentation, Release 7.0.0

(continued from previous page)

public ShippingProcessor(ISender shippingStrategy) { ... }
}

// The customer notifier sends the customer an alert when their
// order status changes using the channel specified by the notification
// strategy (email, SMS, etc.).
public class CustomerNotifier
{
public CustomerNotifier(ISender notificationStrategy) { ... }

}

When you register things in Autofac, you might have registrations that look like this:

var builder = new ContainerBuilder();
builder.RegisterType<PostalServiceSender>().As<ISender>();
builder.RegisterType<EmailNotifier>().As<ISender>();
builder.RegisterType<ShippingProcessor>();
builder.RegisterType<CustomerNotifier>();
var container = builder.Build();

How do you make sure the shipping processor gets the postal service strategy and the customer notifier gets
the email strategy?

• Option 1: Redesign Your Interfaces

• Option 2: Change the Registrations

• Option 3: Use Keyed Services

• Option 4: Use Metadata

12.2.1 Option 1: Redesign Your Interfaces

When you run into a situation where you have a bunch of components that implement identical services but they can’t
be treated identically, this is generally an interface design problem.

From an object oriented development perspective, you’d want your objects to adhere to the Liskov substitution principle
and this sort of breaks that.

Think about it from another angle: the standard “animal” example in object orientation. Say you have some animal
objects and you are creating a special class that represents a bird cage that can hold small birds:

public abstract class Animal
{
public abstract string MakeNoise();
public abstract AnimalSize Size { get; }

}

public enum AnimalSize
{
Small, Medium, Large

}
(continues on next page)

264 Chapter 12. Frequently Asked Questions

http://en.wikipedia.org/wiki/Liskov_substitution_principle

Autofac Documentation, Release 7.0.0

(continued from previous page)

public class HouseCat : Animal
{
public override string MakeNoise() { return "Meow!"; }
public override AnimalSize { get { return AnimalSize.Small; } }

}

public abstract class Bird : Animal
{
public override string MakeNoise() { return "Chirp!"; }

}

public class Parakeet : Bird
{
public override AnimalSize { get { return AnimalSize.Small; } }

}

public class BaldEagle : Bird
{
public override string MakeNoise() { return "Screech!"; }
public override AnimalSize { get { return AnimalSize.Large; } }

}

OK, there are our animals. Obviously we can’t treat them all equally, so if we made a bird cage class, we probably
wouldn’t do it like this:

public class BirdCage
{
public BirdCage(Animal animal)
{
if(!(animal is Bird) || animal.Size != AnimalSize.Small)
{
// We only support small birds.
throw new NotSupportedException();

}
}

}

Designing your bird cage to take just any animal doesn’t make sense. You’d at least want to make it take only birds:

public class BirdCage
{
public BirdCage(Bird bird)
{
if(bird.Size != AnimalSize.Small)
{
// We know it's a bird, but it needs to be a small bird.
throw new NotSupportedException();

}
}

}

But if we change the class design just a little bit, we can make it even easier and force only the right kind of birds to

12.2. How do I pick a service implementation by context? 265

Autofac Documentation, Release 7.0.0

even be allowed to be used:

// We still keep the base Bird class...
public abstract class Bird : Animal
{
public override string MakeNoise() { return "Chirp!"; }

}

// But we also add a "PetBird" class - for birds that
// are small and kept as pets.
public abstract class PetBird : Bird
{
// We "seal" the override to ensure all pet birds are small.
public sealed override AnimalSize { get { return AnimalSize.Small; } }

}

// A parakeet is a pet bird, so we change the base class.
public class Parakeet : PetBird { }

// Bald eagles aren't generally pets, so we don't change the base class.
public class BaldEagle : Bird
{
public override string MakeNoise() { return "Screech!"; }
public override AnimalSize { get { return AnimalSize.Large; } }

}

Now it’s easy to design our bird cage to only support small pet birds. We just use the correct base class in the
constructor:

public class BirdCage
{
public BirdCage(PetBird bird) { }

}

Obviously this is a fairly contrived example with flaws if you dive too far into the analogy, but the principle holds -
redesigning the interfaces helps us ensure the bird cage only gets what it expects and nothing else.

Bringing this back to the ordering system, it might seem like every delivery mechanism is just “sending something”
but the truth is, they send very different types of things. Maybe there’s a base interface that is for general “sending of
things,” but you probably need an intermediate level to differentiate between the types of things being sent:

// We can keep the ISender interface if we want...
public interface ISender
{
void Send(Destination dest, Content content);

}

// But we'll introduce intermediate interfaces, even
// if they're just "markers," so we can differentiate between
// the sort of sending the strategies can perform.
public interface IOrderSender : ISender { }
public interface INotificationSender : ISender { }

// We change the strategies so they implement the appropriate
(continues on next page)

266 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

// interfaces based on what they are allowed to send.
public class PostalServiceSender : IOrderSender { ... }
public class EmailNotifier : INotificationSender { ... }

// Finally, we update the classes consuming the sending
// strategies so they only allow the right kind of strategy
// to be used.
public class ShippingProcessor
{
public ShippingProcessor(IOrderSender shippingStrategy) { ... }

}

public class CustomerNotifier
{
public CustomerNotifier(INotificationSender notificationStrategy) { ... }

}

By doing some interface redesign, you don’t have to “choose a dependency by context” - you use the types to
differentiate and let auto-wireup magic happen during resolution.

If you have the ability to affect change on your solution, this is the recommended option.

12.2.2 Option 2: Change the Registrations

One of the things Autofac lets you do when you register components is to register lambda expressions rather than just
types. You can manually associate the appropriate type with the consuming component in that way:

var builder = new ContainerBuilder();
builder.Register(ctx => new ShippingProcessor(new PostalServiceSender()));
builder.Register(ctx => new CustomerNotifier(new EmailNotifier()));
var container = builder.Build();

If you want to keep the senders being resolved from Autofac, you can expose them both as their interface types and as
themselves, then resolve them in the lambda:

var builder = new ContainerBuilder();

// Add the "AsSelf" clause to expose these components
// both as the ISender interface and as their natural type.
builder.RegisterType<PostalServiceSender>()

.As<ISender>()

.AsSelf();
builder.RegisterType<EmailNotifier>()

.As<ISender>()

.AsSelf();

// Lambda registrations resolve based on the specific type, not the
// ISender interface.
builder.Register(ctx => new ShippingProcessor(ctx.Resolve<PostalServiceSender>()));
builder.Register(ctx => new CustomerNotifier(ctx.Resolve<EmailNotifier>()));
var container = builder.Build();

12.2. How do I pick a service implementation by context? 267

Autofac Documentation, Release 7.0.0

If using the lambda mechanism feels too “manual” or if the processor objects take lots of parameters, you can manually
attach parameters to the registrations:

var builder = new ContainerBuilder();

// Keep the "AsSelf" clause.
builder.RegisterType<PostalServiceSender>()

.As<ISender>()

.AsSelf();
builder.RegisterType<EmailNotifier>()

.As<ISender>()

.AsSelf();

// Attach resolved parameters to override Autofac's
// lookup just on the ISender parameters.
builder.RegisterType<ShippingProcessor>()

.WithParameter(
new ResolvedParameter(

(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<PostalServiceSender>()));

builder.RegisterType<CustomerNotifier>();
.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<EmailNotifier>()));

var container = builder.Build();

Using the parameter method, you still get the “auto-wireup” benefit when creating both the senders and the processors,
but you can specify a very specific override in those cases.

If you can’t change your interfaces and you want to keep things simple, this is the recommended option.

12.2.3 Option 3: Use Keyed Services

Perhaps you are able to change your registrations but you are also using modules to register lots of different components
and can’t really tie things together by type. A simple way to get around this is to use keyed services.

In this case, Autofac lets you assign a “key” or “name” to a service registration and resolve based on that key from
another registration. In the module where you register your senders, you would associate the appropriate key with
each sender; in the module where you register you processors, you’d apply parameters to the registrations to get the
appropriate keyed service dependency.

In the module that registers your senders, add key names:

public class SenderModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<PostalServiceSender>()

.As<ISender>()

.Keyed<ISender>("order");
builder.RegisterType<EmailNotifier>()

.As<ISender>()

.Keyed<ISender>("notification");
(continues on next page)

268 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

}
}

In the module that registers the processors, add parameters that use the known keys:

public class ProcessorModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<ShippingProcessor>()

.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.ResolveKeyed<ISender>("order")));

builder.RegisterType<CustomerNotifier>();
.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.ResolveKeyed<ISender>("notification")));

}
}

Now when the processors are resolved, they’ll search for the keyed service registrations and you’ll get the right one
injected.

You can have more than one service with the same key so this will work if you have a situation where your sender
takes in an IEnumerable<ISender> as well via implicitly supported relationships. Just set the parameter to ctx.
ResolveKeyed<IEnumerable<ISender>>("order") with the appropriate key in the processor registration; and
register each sender with the appropriate key.

If you have the ability to change the registrations and you’re not locked into doing assembly scanning for all your
registrations, this is the recommended option.

12.2.4 Option 4: Use Metadata

If you need something more flexible than keyed services or if you don’t have the ability to directly affect registrations,
you may want to consider using the registration metadata facility to tie the right services together.

You can associate metadata with registrations directly:

public class SenderModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<PostalServiceSender>()

.As<ISender>()

.WithMetadata("SendAllowed", "order");
builder.RegisterType<EmailNotifier>()

.As<ISender>()

.WithMetadata("SendAllowed", "notification");
}

}

You can then make use of the metadata as parameters on consumer registrations:

12.2. How do I pick a service implementation by context? 269

Autofac Documentation, Release 7.0.0

public class ProcessorModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<ShippingProcessor>()

.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<IEnumerable<Meta<ISender>>>()

.First(a => a.Metadata["SendAllowed"].Equals("order")).
→˓Value));

builder.RegisterType<CustomerNotifier>();
.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<IEnumerable<Meta<ISender>>>()

.First(a => a.Metadata["SendAllowed"].Equals("notification
→˓")).Value));
}

}

(Yes, this is just slightly more complex than using keyed services, but you may desire the flexibility the metadata facility
offers.)

If you can’t change the registrations of the sender components, but you’re allowed to change the object defini-
tions, you can add metadata to components using the “attribute metadata” mechanism. First you’d create your custom
metadata attribute:

[System.ComponentModel.Composition.MetadataAttribute]
public class SendAllowedAttribute : Attribute
{

public string SendAllowed { get; set; }

public SendAllowedAttribute(string sendAllowed)
{
this.SendAllowed = sendAllowed;

}
}

Then you can apply your custom metadata attribute to the sender components:

[SendAllowed("order")]
public class PostalServiceSender : IOrderSender { ... }

[SendAllowed("notification")]
public class EmailNotifier : INotificationSender { ... }

When you register your senders, make sure to register the AttributedMetadataModule:

public class SenderModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<PostalServiceSender>().As<ISender>();

(continues on next page)

270 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

builder.RegisterType<EmailNotifier>().As<ISender>();
builder.RegisterModule<AttributedMetadataModule>();

}
}

The consuming components can then use the metadata just like normal - the names of the attribute properties become
the names in the metadata:

public class ProcessorModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<ShippingProcessor>()

.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<IEnumerable<Meta<ISender>>>()

.First(a => a.Metadata["SendAllowed"].Equals("order"))));
builder.RegisterType<CustomerNotifier>()

.WithParameter(
new ResolvedParameter(
(pi, ctx) => pi.ParameterType == typeof(ISender),
(pi, ctx) => ctx.Resolve<IEnumerable<Meta<ISender>>>()

.First(a => a.Metadata["SendAllowed"].Equals("notification
→˓"))));
}

}

For your consuming components, you can also use attributed metadata if you don’t mind adding a custom Autofac
attribute to your parameter definition:

public class ShippingProcessor
{
public ShippingProcessor([WithMetadata("SendAllowed", "order")] ISender␣

→˓shippingStrategy) { ... }
}

public class CustomerNotifier
{
public CustomerNotifier([WithMetadata("SendAllowed", "notification")] ISender␣

→˓notificationStrategy) { ... }
}

If your consuming components use the attribute, you need to register them WithAttributeFilter:

public class ProcessorModule : Module
{
protected override void Load(ContainerBuilder builder)
{
builder.RegisterType<ShippingProcessor>().WithAttributeFilter();
builder.RegisterType<CustomerNotifier>().WithAttributeFilter();

}
}

12.2. How do I pick a service implementation by context? 271

Autofac Documentation, Release 7.0.0

Again, the metadata mechanism is very flexible. You can mix and match the way you associate metadata with com-
ponents and service consumers - attributes, parameters, and so on. You can read more about registration metadata,
registration parameters, resolution parameters, and implicitly supported relationships (like the Meta<T> relationship)
on their respective pages.

If you are already using metadata or need the flexibility metadata offers, this is the recommended option.

12.3 How do I create a session-based lifetime scope in a web appli-
cation?

In ASP.NET the notion of “instance per request” is inherently supported, but you may have a desire to create an “instance
per session” for some objects.

This road is fraught with peril and is totally unsupported. It’s a question asked often enough that we’ve provided
some information about the possible way to get it to work based on this StackOverflow answer but if it’s not working
for you or you need additional support to get it to happen, you’re on your own.

Also, this information is for ASP.NET MVC classic, not ASP.NET Core but the same challenges will apply. Most
likely this will not be updated for ASP.NET Core. It will probably also not be updated for Web API, web forms, or any
other integration. You will need to take the ideas here and adapt them as needed.

• Why This is a Bad Idea

– Memory Footprint

– Not Farm Friendly

– Session Not Consistently Used

– Unreliable Disposal

• How to Do It

12.3.1 Why This is a Bad Idea

Before you even begin, here are the challenges you’ll run into with a session-scoped lifetime:

Memory Footprint

You’re going to end up with a lifetime scope for every user on your system. While a request lifetime pops up and goes
away pretty quickly, these session-level scopes will live potentially a long time. If you have a lot of session-scoped
items, you’re going to have a pretty good sized memory usage for each user. If people “abandon” their sessions without
properly logging out, that’s all the longer these things will live.

272 Chapter 12. Frequently Asked Questions

https://stackoverflow.com/questions/11721919/managing-autofac-lifetime-scopes-per-session-and-request-in-asp-net-mvc-3/11726210#11726210

Autofac Documentation, Release 7.0.0

Not Farm Friendly

Lifetime scopes and their contents aren’t serializable. Looking at the code for LifetimeScope, it’s not marked
[Serializable]. . . and even if it was, the resolved objects living in there are not necessarily all marked serializ-
able. This is important because it means your session-level lifetime scope might work on a single box with in-memory
session, but if you deploy to a farm with SQL session or a session service, things will fall apart because the session
can’t serialize your stored scope.

If you choose not to serialize the scope, then you have a different scope for each user across machines - also a potential
problem.

Session Not Consistently Used

Session isn’t always rehydrated. If the handler being accessed (e.g., the web form) doesn’t implement
IRequiresSessionState, the session won’t be rehydrated (whether it’s in-proc or not). Web forms and the
MvcHandler implement that by default so you won’t see any issues, but if you have custom handlers that require
injection you’ll hit some snags since “Session” won’t exist for those requests. You’ll also have trouble for handlers that
have explicitly marked themselves as not needing session (e.g., for performance purposes).

Unreliable Disposal

Session_End doesn’t always fire. Per the docs on SessionStateModule.End, if you use out-of-proc session state you
won’t actually get the Session_End event, so you won’t be able to clean up.

12.3.2 How to Do It

Let’s say you’ve still read through all that and you want this.

At least in ASP.NET MVC classic, what you’ll do is implement your own Auto-
fac.Integration.Mvc.ILifetimeScopeProvider. This interface is what governs how/where request lifetime scopes get
generated.

Exactly how to implement it will be up to you. This is because of all of the challenges above. For example, where will
you hold the session-based lifetime scope? Is it attached to the actual session (which is a problem due to serialization)?
Is it in a static dictionary somewhere? Is there some other place you want to hold those references? These aren’t
questions that can be answered here - this is all largely “an exercise for the reader.”

The default ILifetimeScopeProvider implementation, Autofac.Integration.Mvc.
RequestLifetimeScopeProvider, handles creation, disposal, and maintenance of lifetime scopes on a per-request
basis. You can browse the code for RequestLifetimeScopeProvider here, which you should do if you plan on
undertaking this. It’s the best sample of working code showing the responsibility of one of these providers.

The implementation of ILifetimeScopeProvider will be where you. . .

• Locate (or create) the session lifetime scope for the user

• Create the request lifetime scope as a child of the session lifetime scope

• Dispose of the request lifetime scope at the end of the request

This may be also where you want to dispose of the session lifetime scope from a design perspective, but it could be
tricky since the provider doesn’t automatically get the session end event.

Once you have your ILifetimeScopeProvider you’ll use it when you set up your dependency resolver.

12.3. How do I create a session-based lifetime scope in a web application? 273

https://github.com/autofac/Autofac/blob/develop/src/Autofac/Core/Lifetime/LifetimeScope.cs
https://msdn.microsoft.com/en-us/library/system.web.sessionstate.sessionstatemodule.end.aspx
https://github.com/autofac/Autofac.Mvc/blob/develop/src/Autofac.Integration.Mvc/RequestLifetimeScopeProvider.cs

Autofac Documentation, Release 7.0.0

var scopeProvider = new MyCustomLifetimeScopeProvider(container, configAction);
var resolver = new AutofacDependencyResolver(container, scopeProvider);
DependencyResolver.SetResolver(resolver);

You will also need to hook into the Session_End event (e.g., in your Global.asax or MvcApplication class) to
dispose of the session scope. Again, how you do that exactly is up to you since the ILifetimeScopeProvider doesn’t
receive any session-related events.

12.4 Why aren’t my assemblies getting scanned after IIS restart?

Sometimes you want to use the assembly scanning mechanism to load up plugins in IIS hosted applications.

When hosting applications in IIS all assemblies are loaded into the AppDomain when the application first starts, but
when the AppDomain is recycled by IIS the assemblies are then only loaded on demand.

To avoid this issue use the GetReferencedAssemblies() method on System.Web.Compilation.BuildManager to get a list
of the referenced assemblies instead:

var assemblies = BuildManager.GetReferencedAssemblies().Cast<Assembly>();

That will force the referenced assemblies to be loaded into the AppDomain immediately making them available for
module scanning.

Alternatively, rather than using AppDomain.CurrentDomain.GetAssemblies() for scanning, manually load the
assemblies from the filesystem. Doing a manual load forces them into the AppDomain so you can start scanning.

12.5 How do I conditionally register components?

There are times when you want to pick what gets registered in the container at runtime, maybe based on an environment
variable or application parameter. Here are some options. . .

• Use Configuration

• Use Modules

• Lambda Registrations

12.5.1 Use Configuration

Autofac provides a configuration mechanism that allows you to specify registrations via a configuration file. You can set
up different configuration files to use in different environments and/or with different parameters, then during application
startup pick the appropriate configuration file to read and register.

If you choose to use the Microsoft.Extensions.Configuration abstractions (Autofac 4.0+) you can even repre-
sent configuration as environment variables directly. See the docs on Microsoft.Extensions.Configuration for
how to represent configuration in environment variables.

274 Chapter 12. Frequently Asked Questions

https://msdn.microsoft.com/en-us/library/system.web.compilation.buildmanager.getreferencedassemblies.aspx
https://msdn.microsoft.com/en-us/library/system.web.compilation.buildmanager.aspx

Autofac Documentation, Release 7.0.0

12.5.2 Use Modules

Autofac modules are a programmatic configuration mechanism that bundles registrations together. You can add pa-
rameters (e.g., constructor parameters or properties) to your module such that it registers different things or behaves
differently based on provided values - values you read from the runtime environment.

There is an example of this in the documentation for Autofac modules.

12.5.3 Lambda Registrations

You can register components using lambda expressions and make a runtime choice right in the registration for how to
handle things. Note this may have an effect on performance depending on the expense of the runtime check and how
often it gets executed, but it’s an option.

builder.Register(c =>
{
var environment = Environment.GetEnvironmentVariable("environment_name");
if(environment == "DEV")
{
return new DevelopmentObject();

}
else
{
return new ProductionObject();

}
})
.As<IMyObject>()
.SingleInstance();

12.6 How do I share component registrations across application
types?

Note for doc writing: This is that question where someone wants to use per-request lifetime scopes in a web app but
some other scope in a different kind of app.

12.7 How do I keep Autofac references isolated away from my app?

It can be desirable to try to keep references to the Autofac assemblies and IoC container out of your application.
Depending on how your application is structured, you may have varying levels of success. Here are some tips on how
to structure your application such to minimize Autofac references as well as some things to watch for if you choose to
do so.

No one idea here will solve all of your problems. You will need to mix and match based on the structure of your
application and what you’re trying to accomplish.

• Application Startup

• Component Registrations

– Assembly Scanning

12.6. How do I share component registrations across application types? 275

Autofac Documentation, Release 7.0.0

– Modules

– Configuration

– IStartable

• Service Resolution

– Service Location

– Implicit Relationships

12.7.1 Application Startup

Application startup is where your IoC container is built up and registrations are made. This is also where the IoC
container is hooked into the composition root for the application. For console apps, this is the Main method; for
ASP.NET apps this is the Startup class or the Global.asax; for other applications there are other entry points.

You shouldn’t try to separate the IoC container from this section of your application. This is the point where it specif-
ically hooks into things. If you’re trying to get Autofac away from your Global.asax or out of your Startup class
(that is, you’re trying to remove the Autofac package/assembly reference from the assembly with this code in it), save
yourself some time and don’t do that. You will potentially sink a lot of time into writing abstractions and wrappers
around things only to replicate a lot of Autofac-specific syntax and capabilities.

12.7.2 Component Registrations

The majority of where Autofac connects to your application is where you make your component registrations into the
container. There are a few ways you can limit Autofac connections here.

Assembly Scanning

Autofac supports registering things through assembly scanning. This can be helpful if you have a known set of assem-
blies or plugins and you want to register all of the types that, for example, implement a specific interface or are named
a certain way.

It is hard to configure individual components when using assembly scanning, though. For example, you can’t really say
“register all of these types, but just this handful need to be singletons while the rest must be instance-per-dependency.”

If you find that you want to use assembly scanning but need this level of control, you may need to use .NET reflection
and handle additional functionality in your own code. For example, if you want to specify lifetime scope via a cus-
tom attribute, you could create that custom attribute and a corresponding set of methods to iterate through the set of
assemblies and make the registrations based on the attribute value.

Modules

Using Autofac modules is a great way to group related type registrations but it does tie the type implementing Autofac.
Module to the Autofac package.

One solution to this is to put the Autofac modules into separate assemblies. In this way, you would have two assemblies
for a given function:

• Product assembly: This assembly has your actual code and has no references to Autofac.

• Module assembly: This assembly has a reference to the product assembly as well as Autofac. This is where you’d
put your Autofac module.

276 Chapter 12. Frequently Asked Questions

http://blog.ploeh.dk/2011/07/28/CompositionRoot/

Autofac Documentation, Release 7.0.0

Your application could then use assembly scanning to locate all of the “module assemblies” and register the modules
inside. (A trick to making this scanning easy is to adopt a naming convention for the module assemblies, then just run
the scanning over those assemblies.)

Configuration

The Autofac configuration system works entirely based on a configuration file and allows you to specify registrations
that are read in by your application startup code without requiring any references elsewhere. It is not as full-featured
as Autofac modules so you may not be able to do all of your registrations this way, but it can be helpful for a handful of
registrations.

You can also use the configuration system to register Autofac modules - this can allow you to specify modules in
“module assemblies” (see above) and skip the assembly scanning.

IStartable

Autofac provides an IStartable interface you can use to automatically resolve a component and execute code.

If your IStartable is registered as a singleton (which it generally should be), you can make use of the
AutoActivate() method along with an OnActivated handler to replace it and remove the Autofac dependency:

var builder = new ContainerBuilder();
builder

.RegisterType<TypeRequiringWarmStart>()

.AutoActivate()

.OnActivating(e => e.Instance.Start());

12.7.3 Service Resolution

In the majority case of DI/IoC usage, you shouldn’t have a reference to your IoC container - you’ll instead have con-
structor parameters and/or settable properties that get populated by the container.

However, there are a few areas where you may find yourself tied to Autofac. . .

Service Location

Some frameworks are lacking composition root hooks to enable all dependency injection hooks at the app startup
level. One example of this is classic ASP.NET HttpModules - there is generally no hook that allows you to inject
dependencies into a module. In cases like this, you may find use of service location useful (though you should definitely
minimize service location where possible given it’s an anti-pattern).

In cases where you need a service locator but don’t want to tie to Autofac, consider using an abstraction like Com-
monServiceLocator or Microsoft.Extensions.DependencyInjection. In ASP.NET MVC applications, you’re already
provided with a DependencyResolver for service location; other application types may have similar abstractions al-
ready provided. By using one of these abstractions, you can remove the Autofac reference. . . though you’ll have to
keep a reference to the abstraction.

12.7. How do I keep Autofac references isolated away from my app? 277

http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/
https://www.nuget.org/packages/CommonServiceLocator/
https://www.nuget.org/packages/CommonServiceLocator/
https://www.nuget.org/packages/Microsoft.Extensions.DependencyInjection/

Autofac Documentation, Release 7.0.0

Implicit Relationships

Autofac has several implicit relationships it supports like IEnumerable<T>, Lazy<T>, and Func<T>. For the most
part, the relationships are based on core .NET types. However, if you’re using the following, you’ll be tied to Autofac:

• IIndex<X, B> (indexed collection)

• Meta<T> and Meta<B, X> (strongly typed metadata)

There are no substitutes or workarounds to access instance names/keys or metadata on an object. If you need that
functionality, you’re stuck with those relationships.

However, you can potentially reduce usage of these through your code by. . .

• Creating a factory: You could wrap usage of these relationships in a factory. Define the factory interface in
your application code assembly and define the implementation in a separate assembly that is allowed to reference
Autofac.

• Use lambda registrations: You can register components using a lambda and resolve the value right in the lambda.
This is sort of like putting the factory inside the lambda registration rather than defining a separate interface for
it. It takes a little bit of application code and puts it in the registration (e.g., the use of the metadata and/or the
service key) but that may be an acceptable compromise.

12.8 Why are “old versions” of the framework (e.g., System.Core
2.0.5.0) referenced?

Autofac (3.x) is a Portable Class Library that targets multiple platforms.

As a Portable Class Library, if you open up Autofac in Reflector, dotPeek, or other like tools, you’ll see references to
version 2.0.5.0 of various system libraries. Version 2.0.5.0 is, in fact, the Silverlight version of the .NET framework.
This is expected and is not a problem. At runtime everything pans out. Autofac will correctly bind to the framework
version you’re using - be it .NET 4.5, Silverlight, or Windows Phone. You can read more about Portable Class Libraries
on MSDN.

You may encounter an exception that looks something like this when using Autofac as a Portable Class Library:

Test 'MyNamespace.MyFixture.MyTest' failed: System.IO.FileLoadException : Could not load␣
→˓file or assembly 'System.Core, Version=2.0.5.0, Culture=neutral,␣
→˓PublicKeyToken=7cec85d7bea7798e, Retargetable=Yes' or one of its dependencies. The␣
→˓given assembly name or codebase was invalid. (Exception from HRESULT: 0x80131047)

at Autofac.Builder.RegistrationData..ctor(Service defaultService)
at Autofac.Builder.RegistrationBuilder`3..ctor(Service defaultService,␣

→˓TActivatorData activatorData, TRegistrationStyle style)
at Autofac.RegistrationExtensions.RegisterInstance[T](ContainerBuilder builder, T␣

→˓instance)
MyProject\MyFixture.cs(49,0): at MyNamespace.MyFixture.MyTest()

Make sure your .NET framework is patched. Microsoft released patches to .NET to allow Portable Class Libraries
to properly find the appropriate runtime (KB2468871). If you are seeing the above exception (or something like it), it
means you’re missing the latest .NET framework patches.

This blog entry has a good overview of these and other things you might see when you use Portable Class Libraries.

Autofac 4.x moved away from Portable Class Libraries and targets .NET Standard instead. You shouldn’t see these
errors with Autofac 4.x or higher.

278 Chapter 12. Frequently Asked Questions

https://msdn.microsoft.com/en-us/library/gg597391.aspx
https://msdn.microsoft.com/en-us/library/gg597391.aspx
https://support.microsoft.com/kb/2468871
https://www.paraesthesia.com/archive/2013/03/29/portable-class-library-answers.aspx

Autofac Documentation, Release 7.0.0

12.9 Why don’t all Autofac packages target the latest Autofac core?

Autofac has a lot of integration packages and extensions. You’ll find that not all of these packages directly reference
the very latest of Autofac core.

Unless there’s a technical reason to increase the minimum version requirement for one of these packages, we’ll
keep the version unchanged.

We do this because, generally speaking, we don’t want to force anyone to update their version of Autofac core unless
they absolutely must. This is a fairly good practice for any library set - if a person doesn’t have to take an update, you
shouldn’t force them to do so.

The simple solution is to just add a direct reference in your app/project to your desired Autofac core version.

In .NET Core this “just works.” The project system figures out the latest version of Autofac in the project (i.e., your
direct reference) and redirects all bindings to that. No extra cruft, no work. Like magic.

In .NET full framework projects this results in is the need to use assembly binding redirects. This is the official
supported way to tell the .NET runtime that you need to redirect requests for one version of a strong-named assembly
to a later version of that assembly. This is common enough that both NuGet and Visual Studio will, in many cases,
automatically add these to your configuration files.

Here’s an example of what assembly binding redirects look like:

<?xml version="1.0" encoding="utf-8"?>
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="Autofac"

publicKeyToken="17863af14b0044da"
culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-3.5.0.0"
newVersion="3.5.0.0" />

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="Autofac.Extras.CommonServiceLocator"
publicKeyToken="17863af14b0044da"
culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-3.1.0.0"
newVersion="3.1.0.0" />

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="Autofac.Extras.Multitenant"
publicKeyToken="17863af14b0044da"
culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-3.1.0.0"
newVersion="3.1.0.0" />

</dependentAssembly>
<dependentAssembly>

<assemblyIdentity name="Autofac.Integration.Mvc"
publicKeyToken="17863af14b0044da"
culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-3.3.0.0"
newVersion="3.3.0.0" />

</dependentAssembly>
(continues on next page)

12.9. Why don’t all Autofac packages target the latest Autofac core? 279

https://msdn.microsoft.com/en-us/library/vstudio/2fc472t2.aspx
https://msdn.microsoft.com/en-us/library/vstudio/2fc472t2.aspx

Autofac Documentation, Release 7.0.0

(continued from previous page)

</runtime>
</configuration>

Assembly binding redirects are an unfortunate side-effect of assembly strong-naming. You don’t need binding redirects
if assemblies aren’t strong-named; but there are some environments that require assemblies to be strong-named, so
Autofac continues to strong-name assemblies.

Even if Autofac always kept every reference up to date, you would still not escape assembly binding redirects.
Autofac integration packages, like the Web API integration, rely on other strong-named packages that then have their
own dependencies. For example, the Microsoft Web API packages rely on Newtonsoft.Json and they don’t always keep
up with the latest version. They instead specify a minimum compatible version. If you update your local version of
Newtonsoft.Json. . . you get a binding redirect.

Rather than try to fight against binding redirects, it may be better to just accept them as a “cost of doing business”
in the .NET world. They do add a bit of “clutter” to the application configuration file, but until we can remove strong-
naming from the equation, it’s an inescapable necessity.

12.10 How do I inject configuration, environment, or context parame-
ters?

There are times when you need to resolve a service that consumes a component somewhere down its dependency chain
and that component needs a parameter passed to it from configuration, the environment, or some other runtime context
location.

For this question, let’s imagine a simple email notification system like this:

// This interface lets you send an email notification to someone.
public interface INotifier
{
void Send(string address, string message);

}

// This implementation of the notifier uses a backing email
// repository for doing the heavy lifting.
public class Notifier : INotifier
{
private IEmailServer _server;
public Notifier(IEmailServer server)
{
this._server = server;

}

public void Send(string address, string message)
{
this._server.SendMessage(address, "from@domain.com", message);

}
}

// This email server interface is what the notifier will use
// to send the email.
public interface IEmailServer

(continues on next page)

280 Chapter 12. Frequently Asked Questions

https://msdn.microsoft.com/en-us/library/wd40t7ad.aspx
https://www.nuget.org/packages/Microsoft.AspNet.WebApi.Client/
https://www.nuget.org/packages/Newtonsoft.Json/

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
void SendMessage(string toAddress, string fromAddress, message);

}

// Notice this implementation takes a string parameter for the server address -
// something we won't know until runtime so we can't explicitly register the
// parameter value.
public class EmailServer : IEmailServer
{
private string _serverAddress;
public EmailServer(string serverAddress)
{
this._serverAddress = serverAddress;

}

public void SendMessage(string toAddress, string fromAddress, message)
{
// ...send the message through the specified server address.

}
}

When you register things in Autofac, you might have registrations that look like this:

var builder = new ContainerBuilder();
builder.RegisterType<Notifier>().As<INotifier>();
builder.RegisterType<EmailServer>().As<IEmailServer>();
var container = builder.Build();

The only time you know the email server address is at runtime - maybe through a context or environment parameter,
maybe through configuration.

How do you get the configured/environment/context parameter to the email server when you resolve the
notifier?

• Option 1: Register Using a Lambda

• Option 2: Use a Provider

12.10.1 Option 1: Register Using a Lambda

In this option, rather than registering the email server type directly, register using a lambda expression. This allows
you to resolve things from the container or use the environment to get the value.

var builder = new ContainerBuilder();
builder.Register(ctx =>
{
var address = Environment.GetEnvironmentVariable("SERVER_ADDRESS");
return new EmailServer(address);

}).As<IEmailServer>();

As part of this, you may want to create some sort of abstraction around how you get the server address. For example,

12.10. How do I inject configuration, environment, or context parameters? 281

Autofac Documentation, Release 7.0.0

it may be something that you got as part of a web request and you’ve stored it in the HttpContext. You could create
an address provider like this:

public interface IServerAddressProvider
{
string GetServerAddress();

}

public class ContextServerAddressProvider : IServerAddressProvider
{
private HttpContextBase _context;
public ContextServerAddressProvider(HttpContextBase context)
{
this._context = context;

}

public string GetServerAddress()
{
return (string)this._context.Items["EMAIL_SERVER_ADDRESS"];

}
}

Once you have a provider, you could register that with the container and use it in conjunction with the lambda.

var builder = new ContainerBuilder();
builder.RegisterType<ContextServerAddressProvider>()

.As<IServerAddressProvider>()

.InstancePerRequest();
builder.Register(ctx =>
{
var address = ctx.Resolve<IServerAddressProvider>().GetServerAddress();
return new EmailServer(address);

}).As<IEmailServer>();

If you need to pass a string parameter or can’t modify the code, this is the recommended option.

12.10.2 Option 2: Use a Provider

Expanding on the provider mechanism described in option 1: Usually the biggest problem is that the parameter you
need to pass is a base type like an integer or a string. If you can switch this to use a provider a strongly-typed interface
parameter, you can make registration a little easier.

For example, you may be able to get the parameter from a web request context like this.

public interface IServerAddressProvider
{
string GetServerAddress();

}

public class ContextServerAddressProvider : IServerAddressProvider
{
private HttpContextBase _context;
public ContextServerAddressProvider(HttpContextBase context)

(continues on next page)

282 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

(continued from previous page)

{
this._context = context;

}

public string GetServerAddress()
{
return (string)this._context.Items["EMAIL_SERVER_ADDRESS"];

}
}

You could then refactor the email server code to take the provider rather than an address string:

public class EmailServer : IEmailServer
{
private IServerAddressProvider _serverAddressProvider;
public EmailServer(IServerAddressProvider serverAddressProvider)
{
this._serverAddressProvider = serverAddressProvider;

}

public void SendMessage(string toAddress, string fromAddress, message)
{
var address = this._serverAddressProvider.GetServerAddress();
// ...send the message through the specified server address.

}
}

Now you can just register types:

var builder = new ContainerBuilder();
builder.RegisterType<ContextServerAddressProvider>()

.As<IServerAddressProvider>()

.InstancePerRequest();
builder.RegisterType<EmailServer>().As<IEmailServer>();

If you can modify the code, this is the recommended option.

12.11 How do I pass a parameter to a component in the middle of a
resolve chain?

There are times when you need to resolve a service that consumes a component somewhere down its dependency chain
and that component needs a parameter passed to it.

For this question, let’s imagine a simple email notification system like this:

// This interface lets you send an email notification to someone.
public interface INotifier
{
void Send(string address, string message);

}

(continues on next page)

12.11. How do I pass a parameter to a component in the middle of a resolve chain? 283

Autofac Documentation, Release 7.0.0

(continued from previous page)

// This implementation of the notifier uses a backing email
// repository for doing the heavy lifting.
public class Notifier : INotifier
{
private IEmailServer _server;
public Notifier(IEmailServer server)
{
this._server = server;

}

public void Send(string address, string message)
{
this._server.SendMessage(address, "from@domain.com", message);

}
}

// This email server interface is what the notifier will use
// to send the email.
public interface IEmailServer
{
void SendMessage(string toAddress, string fromAddress, message);

}

// Notice this implementation takes a string parameter for the server address -
// something we won't know until runtime so we can't explicitly register the
// parameter value.
public class EmailServer : IEmailServer
{
private string _serverAddress;
public EmailServer(string serverAddress)
{
this._serverAddress = serverAddress;

}

public void SendMessage(string toAddress, string fromAddress, message)
{
// ...send the message through the specified server address.

}
}

When you register things in Autofac, you might have registrations that look like this:

var builder = new ContainerBuilder();
builder.RegisterType<Notifier>().As<INotifier>();
builder.RegisterType<EmailServer>().As<IEmailServer>();
var container = builder.Build();

The only time you know the email server address is at runtime - maybe through a context or environment parameter,
maybe through configuration.

How do you pass a parameter to the email server when you resolve the notifier?

284 Chapter 12. Frequently Asked Questions

Autofac Documentation, Release 7.0.0

12.11.1 Why This is a Design Problem

Before answering the question, consider that in many respects that asking this question indicates a sort of design
problem.

Technically speaking, you’re resolving an INotifier - a component that doesn’t need to know about the runtime
parameter with the email server address. The implementation of that INotifier could change. You could register a
stub for testing, or switch up how emails get sent so they no longer need to know about the address.

Passing the server address as a parameter to the INotifier breaks the decoupling that interface-based development
and inversion of control gives you by assuming that you “know” how the entire dependency chain is being resolved.

The key to solving the problem is to break that “knowledge” so you’re not passing a parameter.

12.11.2 Solutions

Instead of trying to pass a parameter, flip the problem around - figure out how you determine the parameter at
runtime and wrap that in a provider or a lambda expression registration.

This changes the question to a different FAQ where we walk through answers step by step: How do I inject configuration,
environment, or context parameters?

12.12 Why isn’t container registration analysis built in?

It is pretty frustrating to get runtime exceptions when resolving things due to an incomplete or incorrect set of registra-
tions in your Autofac container. Why isn’t there any sort of analysis built in so you can assert container validity after
the container is built?

While this feature does appear in some containers, the flexibility available in Autofac to handle dependency resolution
based on runtime parameters and dynamic functionality makes it difficult to offer a useful container validity check.

Consider the following example code:

var builder = new ContainerBuilder();

// ProdConfiguration requires a connectionString parameter
// because it reads from a database.
builder.RegisterType<ProdConfiguration>().AsSelf();

// Lambda reads the environment and returns the correct
// configuration based on that.
builder.Register(ctx => {
var env = Environment.GetEnvironmentVariable("ENVIRONMENT");
switch(env)
{
case "Development":
return new TestConfiguration();

case "Production":
return ctx.Resolve<ProdConfiguration>(new NamedParameter("connStr",␣

→˓connectionString));
default:
throw new NotSupportedException("Unknown environment name.");

}
}).As<IConfiguration>();

12.12. Why isn’t container registration analysis built in? 285

Autofac Documentation, Release 7.0.0

Container configuration like this is perfectly valid but it raises questions:

• If ProdConfiguration requires a connection string parameter that isn’t registered in the container, is your
container valid? What if you use service location and pass in the string as a parameter during resolution? How
would the container know that?

• If IConfiguration relies on a particular environment parameter being present and it’s there during deployment
but not during unit tests, is your container valid?

These are somewhat simple cases. Consider the additional cases of things like. . .

• Modules that can dynamically attach things to all registrations like the logging module

• Registration sources

• Registration parameters

• Interceptors, adapters, and decorators

• Dynamic assembly scanning

These are not uncommon scenarios and that’s not even a complete list of dynamic capabilities supported.

It is possible that at some point a very simplistic analysis mechanism could be added to try catching a minority of issues,
but it is likely a more valuable endeavor to enhance Autofac to support better diagnostic and tracing functionality to
more quickly target and resolve runtime challenges that are encountered. (If you’re interested in helping with that effort,
let us know!)

12.13 Why are things in my Xamarin app misbehaving?

Autofac targets .NET Framework and .NET Standard. This makes the code fairly portable across platforms. It can
be used in, among other things, Mono, Xamarin, and Universal Windows Platform apps.

Xamarin provides a cross-platform compiler that can take C# and .NET code and compile that into native applications.
From the docs:

On iOS, Xamarin’s Ahead-of-Time (AOT) Compiler compiles Xamarin.iOS applications directly to native
ARM assembly code. On Android, Xamarin’s compiler compiles down to Intermediate Language (IL),
which is then Just-in-Time (JIT) compiled to native assembly when the application launches.

One of the challenges is that not all the end platforms (e.g., iOS or Android) have support for all .NET features. For
example, the linker may optimize out types that it thinks aren’t used but really are as part of reflection and dependency
injection. It does this as a way to speed up the app and reduce the overall size - remove types and/or methods that it
doesn’t think are used. This sort of conversion and optimization can cause apps that run as expected in .NET to behave
slightly differently in a native compiled app from Xamarin.

Autofac is not specifically built or tested for Xamarin or .NET Native apps. In targeting .NET Standard, it becomes
the job of the cross-platform compiler and linker to ensure compatibility with other .NET Standard code.

We have some tips that we’ve gathered from the community on getting Xamarin and .NET Native apps working. Hope-
fully these will help. If you have additional tips or articles to contribute that might help others, let us know and we’ll
be happy to include them. It can sometimes be a challenge to get the right compiler and linker directives correct to get
things working in Xamarin with reflection.

If you are still having trouble after looking at the tips and doing research, ask your question on StackOverflow.
Tag it xamarin to make sure people familiar with Xamarin get notified and can help answer it.

286 Chapter 12. Frequently Asked Questions

https://github.com/autofac/Autofac/issues
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/introduction-to-mobile-development
https://docs.microsoft.com/en-us/xamarin/cross-platform/get-started/introduction-to-mobile-development
https://stackoverflow.com/questions/tagged/xamarin

CHAPTER

THIRTEEN

GLOSSARY

The goal of this page is to help keep documentation, discussions, and APIs consistent.

Term Meaning
Activa-
tor

Part of a Registration that, given a Context and a set of Parameters, can create a Component Instance
bound to that Context

Argu-
ment

A formal argument to a constructor on a .NET type

Com-
ponent

A body of code that declares the Services it provides and the Dependencies it consumes

In-
stance

A .NET object obtained by Activating a Component that provides Services within a Container (also
Component Instance)

Con-
tainer

A construct that manages the Components that make up an application

Context A bounded region in which a specific set of Services is available
Depen-
dency

A Service required by a Component

Life-
time

A duration bounded by the Activation of an Instance and its disposal

Param-
eter

Non-Service objects used to configure a Component

Regis-
tration

The act of adding and configuring a Component for use in a Container, and the information associated
with this process

Scope The specific Context in which Instances of a Component will be shared by other Components that depend
on their Services

Service A well-defined behavioral contract shared between a providing and a consuming Component; generally
these are interfaces, or some abstraction of a Component

Admittedly this seems a bit low-level to fit with the typical idea of a ‘universal language’, but within the domain of IoC
containers and specifically Autofac these can be viewed as concepts rather than implementation details.

Some more detail on the relationship between a Service and a Component Registration in Autofac terms can be found
in the registration documentation.

Wild deviations from these terms in the API or code should be fixed or raised as issues to fix in a future version.

The terms Application, Type, Delegate, Object, Property etc. have their usual meaning in the context of .NET software
development.

287

Autofac Documentation, Release 7.0.0

288 Chapter 13. Glossary

CHAPTER

FOURTEEN

CONTRIBUTOR GUIDE

The Autofac contributor’s guide is located in GitHub. If you are interested in contributing or building the project from
source, check it out.

Contributors must follow the Code of Conduct.

289

https://github.com/autofac/.github/blob/master/CONTRIBUTING.md
https://github.com/autofac/.github/blob/master/CODE_OF_CONDUCT.md

Autofac Documentation, Release 7.0.0

290 Chapter 14. Contributor Guide

CHAPTER

FIFTEEN

GETTING SUPPORT

15.1 Community Support

Autofac has a large community that can help you out if you have questions. If you can’t find your answer in the
documentation, you can. . .

• Ask your question on StackOverflow. Be sure to use the autofac tag in your question.

• Start a discussion on the forum. This is a good idea if you have multiple questions or a question that might have
a more subjective answer (e.g., “recommendations” sorts of things).

15.2 Commercial Support

Several companies offer commercial support for Autofac questions/design issues:

• Readify - training and consulting services

• CICLO - commercial support and training

• Continuous IT - training, troubleshooting and implementation help

Note: while the above listed companies offer help, they are not officially affiliated with the Autofac project.

If you would like your company listed here, please send an email to the discussion group.

15.3 Filing an Issue

If you’re having trouble figuring something out, please do try at least the community support road before filing a
question-based issue. We do have a really great set of folks on StackOverflow, and while we definitely want to help
you succeed, there is a far, far, far smaller audience answering issues.

If you do find a bug or just can’t get an answer elsewhere, please file issues in the repository corresponding to the
library you’re having trouble with. For example, if you’re having trouble with Web API integration, file the issue
with the Web API Autofac integration library rather than in the core Autofac project.

Please include a detailed description of what’s going wrong, full exception messages and stack traces, and (ide-
ally) a small reproduction so we can see the problem in action like a failing unit test or a link to a small project.
Including as much information as you can will help us address the issue in a more timely fashion.

291

https://stackoverflow.com/questions/tagged/autofac
https://groups.google.com/forum/#forum/autofac
http://readify.net
http://ciclo.pt/
http://continuousit.com
https://stackoverflow.com/questions/tagged/autofac
https://github.com/autofac/Autofac.WebApi/issues

Autofac Documentation, Release 7.0.0

292 Chapter 15. Getting Support

CHAPTER

SIXTEEN

OWNER’S GUIDE

Becoming an Autofac owner is going a step beyond being a contributor. Ownership is a longer-term commitment and,
honestly, may not be for everyone. That’s OK. If you don’t think you’re up for it, we would still love to get your help in
the form of pull requests or answering questions on StackOverflow!

We haven’t seen a great onboarding guide for getting owners up and productive or explaining the responsibilities so. . .
this is our attempt at that.

16.1 Ownership is About Trust

This is the number one difference between ownership and contribution.

If you’re an Autofac owner, you’re providing product and support for people and products around the world, whether
you know it or not. From the smallest hobby project to enterprise-level solutions, Autofac and its integration packages
are used everywhere.

There is an implicit trust between all of these projects and you. They trust that every change you make is doing
something for the better. They trust that things have been well tested. They trust that if something has gone wrong
in the latest release that there’s going to be someone - you - there to answer questions, help debug things, and correct
issues.

They trust that you’re not doing anything malicious.

Being an owner is accepting that trust and always trying your best to do the right thing for the project and the community.

16.2 Code of Conduct

Our code of conduct is posted on GitHub. All owners must follow the code of conduct. Owners are responsible for
enforcing the code of conduct on each other and on contributors.

16.3 Responsibilities

As an owner, you have a few additional responsibilities that a standard contributor doesn’t have.

293

https://snyk.io/blog/malicious-code-found-in-npm-package-event-stream/
https://github.com/autofac/Autofac/blob/develop/CODE_OF_CONDUCT.md

Autofac Documentation, Release 7.0.0

16.3.1 API Design

Owners have the final say about the shape of the public API. Do we need a new class here or a new interface there? Is
that new method overload really helpful? As noted in contributors guide, there are a lot of things that may constitute
breaking changes in the API. We can add things pretty easily. . . but removing them once the package has been taken is
a major version increment and a breaking change for downstream consumers.

As contributions come in, or as you work on new features and functionality, you need to keep a conscious eye toward
the public API footprint.

Autofac and its extension packages make use of internal classes for things that shouldn’t be consumed by the public.
This allows freedom to refactor without incurring breaking changes.

16.3.2 Bug Fixes and Enhancements

Issues are filed all the time to let us know about problems folks are having or new features they’d like. The vast majority
of the time, these issues do not come with any associated pull request. It’s up to you to fix things or add features based
on the needs noted in the issue.

Implementing fixes and features is a lot more than just coding. You need to be able to imagine what other use cases
out there are occurring and whether the thing you’re changing is going to break that use case. You need to consider the
API design and whether the thing you’re implementing will be supportable long-term.

There is no feature roadmap unless you make it.

Most of the enhancements and new features implemented in Autofac start with issues someone files mentioning how
something is currently hard and should be easier. In some cases, people may find a new way they’d like to use an
existing feature but it’s just not working right.

As an owner, you get to implement the fixes and features that other contributions aren’t covering.

16.3.3 Performance and Testing

Performance is your responsibility. You may think of a great fix, but if it slows everything down, it’s probably not
the way to go. This additional feature someone asked for may sound awesome, but if it means an additional 10ms per
resolve operation, it may need to be reconsidered. That cache idea to speed things up may be great, but if it takes an
additional 100MB of RAM to support, the speed trade-off may not be worth it.

Whatever you’re adding, whether from your own code or by virtue of accepting a contribution, needs to be considered
from a performance and testing perspective. This isn’t something most contributors check.

If it isn’t tested, don’t release it.

16.3.4 Issue Review

Issues come in for a lot of reasons - from questions to bug reports to enhancement requests.

If the issue is a question, we generally try to get them to post to StackOverflow and tag the question autofac. We
do that because then the question can be searched by other people. People trying to figure out how something works
largely won’t come looking through the closed issues list in GitHub, so answering the question in GitHub only helps
that one person while answering on StackOverflow can help many people. We also discourage folks from double-
posting questions - if it’s on StackOverflow and it’s been filed on GitHub, put a link to the StackOverflow question in
the issue and close the issue. (This information should also be in the issue template in every Autofac repo, so folks
double-posting aren’t actually reading the issue template.)

294 Chapter 16. Owner’s Guide

https://stackoverflow.com

Autofac Documentation, Release 7.0.0

If the issue is a bug report, we need some ability to reproduce the issue so we can verify it. Ideally this is in the form of
a simple, self-contained failing unit test. If there is no reproduction, encourage the person to add one so you can more
adequately help.

As an owner, it’s up to you to verify whether it’s a bug or whether it’s functioning as designed. If it’s a bug, tag the
issue as bug. Now you can fix it or someone can submit a pull request to fix it. In any case, there really needs to be a
unit test for any bug fixes so we don’t regress the issue. Consider adding a comment in the unit test to indicate which
issue is associated with the test.

For things that are functioning as designed, this is an opportunity for support. Explain why the reproduction the user
submitted is invalid and show them how to fix it. Usually you can refer them to documentation or examples showing
working versions of what they’re trying to do.

For enhancement issues, there are a lot of things to consider.

• Is this something that can already be done with the existing API?

• Is this something that the library should own or is it something that would be better owned by the person’s
application code?

• How many other people would find this enhancement useful?

• How does this affect the public API?

• The change may be a good one, but will it break existing features?

• How will this affect performance?

• If it’s a change to the way integration works with a third-party framework, is this something the third-party
framework will be obsoleting soon?

Being an owner means you get to determine if an enhancement or bug someone has reported is actually something that
should be addressed. In some cases, you’re going to have to say no. It’s OK to say no. Don’t say no to everything,
but. . . not everything is a good idea, either. If you do say no, explain to the user why that’s the case so they can
understand.

For example, say someone files a defect saying they didn’t register any ICar implementations but somehow they can
resolve IEnumerable<ICar> and it’s empty. They think they should be getting null instead. Unfortunately, Autofac
currently intentionally returns an empty collection. Changing that behavior would be very breaking, so that’s not a fix
we could provide. We’d say no to this.

16.3.5 Pull Request Review

When a pull request comes in, it’s up to you as an owner to determine whether it’s something that should be accepted,
whether it needs work before we can accept it, or whether it shouldn’t be accepted at all.

The ultimate responsibility for accepting a pull request and maintaining the contents of that PR is with the
Autofac owners.

If accepting and releasing the contents of a pull request breaks something, it’ll be up to you as the owner to fix it. The
original submitter will likely not be available in the required time frame to issue a fix if something breaks. By accepting
the pull request code, you’re accepting responsibility and ownership for that code on behalf of all the Autofac owners.

Things to consider as you look at a PR. . .

• Is it against the correct branch? PRs should be against develop since we follow Gitflow.

• Can we maintain it? There are some great optimizations that folks might submit, but if no one who owns Autofac
understands how it works, it’ll be hard to maintain long term if something goes wrong. The original PR submitter
isn’t the person who will own it, you are.

16.3. Responsibilities 295

Autofac Documentation, Release 7.0.0

• Is it really big? We get a lot of really big pull requests that drastically change things. Some of these are fantastic.
Some include breaking API changes we can’t take. If it’s super big, it takes a long time to review. You’ll likely
have to check out the PR branch, build it locally, and test it yourself. Is there a way to break it into smaller PRs?
If it’s this big, was there an issue filed first that explains the intent? (Usually a large PR should have an issue
first.)

• Does it need tests? A PR for a spelling or doc fix is easy to take. For code. . . does the PR come with tests that
verify the behavior? If not, it’s your call as an owner - you can ask the submitter to write tests (which may result
in the submitter abandoning the PR because they think it’s too much effort) or you can accept the PR and add
tests yourself after the fact.

• Does it break anything? Some PRs come with inadvertent breaking changes to the API, a refactor of something
that didn’t need to be refactored, for example.

• Did NuGet package references change? Lots of PRs include updates to NuGet packages that aren’t technically
required. Unless there’s a technical reason to take the update, we need to keep on the lowest possible versions
for widest compatibility. (Sometimes we’ll get issues or PRs just to force that update. That’s not the answer. If
an individual app needs an update, they need to do that at the app level.)

• Does it adhere to our standards? The Contributor’s Guide outlines not only our general coding standards but
the fact that everything should build and test with no errors, no warnings. Does the PR introduce any Roslyn
analyzer warnings?

This isn’t a complete list, but it gives you some ideas of things to look for. Not every pull request that comes in is
something we can just accept straight up.

If you need clarification on things, ask the person who submitted the PR to explain stuff. A pull request isn’t a thing
where someone throws code over the wall to you, it’s a community endeavor.

If you want help looking at something, tag one of the other Autofac owners to give it a look. You’re not alone.

16.3.6 Support

Support is one of those “hidden costs” of being an owner of an open source project. A lot more time goes to support
than you might think. Sometimes you may spend more time on support than you do on coding things.

We accept support requests through a variety of channels.

• StackOverflow with questions that are tagged autofac.

• Google Groups

• Twitter

• Gitter

• GitHub issues (though, ideally, “How do I. . . ?” sorts of questions go on StackOverflow)

At a minimum, as an owner you should subscribe to the autofac questions on SO and the Google Group.

You are not required to write other peoples’ code for them.

You are not a free consultant service.

Treat people cordially and with respect, however, there are an unfortunate number of questions that amount to, “I’m
trying to write a super complex system and I’m using Autofac. Show me the code that implements this system.” Don’t
feel obligated to implement other peoples’ systems for them.

If you don’t know the answer, that’s OK. Try your best. It may require you learn something new in the Autofac space,
which is helpful as an owner. That said, you’re not required to memorize every framework Autofac integrates with, so
there will be times you don’t know and that’s OK.

296 Chapter 16. Owner’s Guide

https://stackoverflow.com
https://groups.google.com/forum/#!forum/autofac
https://twitter.com/autofacioc
https://gitter.im/autofac/Autofac

Autofac Documentation, Release 7.0.0

16.3.7 Documentation and Examples

Documentation is how many people understand how Autofac and its integration works.

Documentation takes many forms:

• Long-form prose, like the site you’re reading now. Something that explains in detail how to use something with
examples.

• XML API documentation. These are the <summary> sorts of comments on members in the code. IntelliSense
is generated from this content, as is the HTML API documentation.

• Inline code comments. If there’s a particularly difficult to understand section of code or something in the code
that might be confusing (“Why did this variable have to get proactively disposed right here?”), adding a small
comment to explain why something is happening can help other contributors to not regress defects or inadver-
tently create performance issues.

As an owner, you’re responsible for all of these types of documentation. People around the world learn in different
ways. Not all of them are ready to dive into GitHub repos and “read the code.” It’s our job to try to accommodate all
the different levels of learners with the docs they require.

Examples may be:

• Small projects that demonstrate an end-to-end feature. We have a whole Examples repository with this sort of
thing. These are helpful to show (and test) real working integration features.

• Unit tests. These are harder to interpret for some users, but are good for being “executable specifications” of how
something should work.

• Inline examples. In the documentation, you can pull from small projects or unit tests to create code snippets that
illustrate how to use a feature.

Again, as an owner, it’s up to you to help support the project with proper docs and examples so people know how to
consume the libraries.

16.3.8 Compatibility

It is an explicit goal to be as compatible with as much as possible at any given time.

The contributors guide talks about different considerations in compatibility. Briefly:

• Framework compatibility: Changing from netstandard1.0 to netstandard2.0 as a minium requirement for
a library means all the consumers using the library can no longer take an upgrade.

• API compatibility: Adding a new member on an interface, moving an extension method to a different static class,
or even adding an optional parameter on an existing method is a breaking public API change. Doing that will
break someone consuming that API if they take the upgrade.

• Dependency compatibility: If an Autofac component takes an upgrade to a dependency, it effectively forces all of
the consumers of that Autofac component to also take the upgrade. In general, we should leave that choice up to
the application developer where possible. There may be a technical reason to take an upgrade, like an integration
that needs to take advantage of a new feature. Those choices need to be weighed individually.

As you maintain Autofac, it’s up to you as an owner to determine when it’s a good time to make a change that will
potentially break the thousands of projects consuming the library you’re working on. These are hard decisions. It’s OK
to ask for help.

From a general policy perspective, we should always be compatible with the latest release of a third party framework
with which we integrate. That doesn’t always mean we require the latest version, but that we’re compatible with it. If
there is a choice where the two are mutually exclusive - we can either be compatible with the older stuff or we have to
move forward. . . we’ll choose to move forward.

16.3. Responsibilities 297

https://github.com/autofac/Examples

Autofac Documentation, Release 7.0.0

16.4 Release Process

We follow the Gitflow workflow process. Ongoing development should happen in the develop branch. Continuous
integration builds get published to MyGet and can be consumed for testing purposes.

When it’s time to cut a release, we’ll:

• Ensure the semantic version is correct based on the changes since the last release. Update if needed, do a final
CI build on the develop branch.

• Merge develop into master and tag the repo with vX.Y.Z using the semantic version of the release.

• After the CI build is complete and pushed to MyGet, push the package from MyGet to NuGet as the final release.

• When NuGet has the new release, download the published package manually from NuGet.

• Create a release page on the GitHub repository for the thing that just released. In that release page, add the release
notes explaining the changes that have taken place. Upload the .nupkg you downloaded from NuGet so folks can
get it if needed.

We maintain the manual .nupkg download because there are some areas around the world that may have NuGet blocked
or strongly filtered. This allows those areas to manually get the library if they need it and host their own repository.

16.5 You Are Not Alone

As an Autofac owner, you’re part of a small community of folks who have all committed to providing ongoing support
for a popular package consumed by people all over the world. It’s a lot of responsibility and it can be overwhelming.

Just remember, you’re not alone. You’re part of the team. If you need help from one of the other owners, say so. At
some point, someone else may need help from you. That’s great! Let’s work together to make this the best inversion-
of-control container out there.

298 Chapter 16. Owner’s Guide

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

• search

299

	Getting Started
	Structuring the Application
	Add Autofac References
	Application Startup
	Application Execution
	Going Further
	Need Help?
	Building from Source

	What’s New
	Release Notes
	Upgrading from Autofac 6.x to 7.x
	Upgrading from Autofac 5.x to 6.x
	Upgrading from Autofac 3.x to 4.x

	Registering Components
	Registration Concepts
	Reflection Components
	Register by Type
	Specifying a Constructor
	Required Properties

	Instance Components
	Lambda Expression Components
	Complex Parameters
	Property Injection
	Selection of an Implementation by Parameter Value

	Open Generic Components
	Services vs. Components
	Default Registrations
	Conditional Registration
	Configuration of Registrations
	Dynamically-Provided Registrations

	Passing Parameters to Register
	Available Parameter Types
	Parameters with Reflection Components
	Parameters with Lambda Expression Components

	Property and Method Injection
	Property Injection
	Required Properties
	Required Properties and Constructors
	Required Properties and Parameters

	PropertiesAutowired
	Manually Specifying Properties
	Overriding Required Properties
	Injecting Properties on an Existing Object

	Method Injection

	Assembly Scanning
	Scanning for Types
	Filtering Types
	Specifying Services

	Scanning for Modules
	IIS Hosted Web Applications

	Resolving Services
	Passing Parameters to Resolve
	Available Parameter Types
	Parameters with Reflection Components
	Parameters with Lambda Expression Components
	Passing Parameters Without Explicitly Calling Resolve

	Implicit Relationship Types
	Supported Relationship Types
	Direct Dependency (B)
	Delayed Instantiation (Lazy)
	Controlled Lifetime (Owned)
	Dynamic Instantiation (Func)
	Parameterized Instantiation (Func<X, Y, B>)
	Enumeration (IEnumerable, IList, ICollection)
	Metadata Interrogation (Meta, Meta<B, X>)
	Keyed Service Lookup (IIndex<X, B>)

	Composing Relationship Types
	Relationship Types and Container Independence

	Controlling Scope and Lifetime
	Basic Concepts and Terminology
	Scopes and Hierarchy
	Example: Singleton Lifetime
	Example: Web Application
	Additional Topics to Explore
	Working with Lifetime Scopes
	Creating a New Lifetime Scope
	Tagging a Lifetime Scope
	Adding Registrations to a Lifetime Scope

	Instance Scope
	Instance Per Dependency
	Single Instance
	Instance Per Lifetime Scope
	Instance Per Matching Lifetime Scope
	Instance Per Request
	Instance Per Owned
	Thread Scope

	Captive Dependencies
	General Rule
	Simple Example
	Code Example
	Exception to the Rule

	Disposal
	Registering Components
	Automatic Disposal
	Asynchronous Disposal Support
	Specified Disposal
	Disabling Disposal

	Resolve Components from Lifetime Scopes
	Child Scopes are NOT Automatically Disposed
	Provided Instances
	Advanced Hierarchies

	Lifetime Events
	OnPreparing
	OnActivating
	OnActivated
	OnRelease

	Running Code at Container Build
	Startable Components
	Auto-Activated Components
	Build Callbacks
	Lifetime Scopes
	Tips

	Configuration
	JSON/XML Configuration
	Configuring With Microsoft Configuration (4.0+)
	Quick Start
	Default Assembly
	Components
	Modules
	Type Names
	Differences from Legacy Configuration
	Additional Tips

	Configuring With Application Configuration (Legacy Pre-4.0)
	Setup
	Components
	Component Attributes
	Component Child Elements

	Modules
	Additional Config Files
	Configuring the Container
	Multiple Files or Sections

	Modules
	Introduction
	Advantages of Modules
	Decreased Configuration Complexity
	Configuration Parameters are Explicit
	Abstraction from the Internal Application Architecture
	Better Type Safety
	Dynamic Configuration
	Advanced Extensions

	Example
	Encapsulated Configuration
	Flexibility to Override

	Adapting to the Deployment Environment
	Common Use Cases for Modules

	Application Integration
	ASP.NET
	OWIN
	Quick Start
	Dependency Injection in Middleware
	Controlling Middleware Order
	Example

	MVC
	Quick Start
	Register Controllers
	Set the Dependency Resolver
	Register Model Binders
	Register Web Abstractions
	Enable Property Injection for View Pages
	Enable Property Injection for Action Filters
	Enable Injection of Action Parameters
	OWIN Integration
	Using “Plugin” Assemblies
	Using the Current Autofac DependencyResolver
	Glimpse Integration
	Unit Testing
	Example

	Web API
	Quick Start
	Get the HttpConfiguration
	Register Controllers
	Set the Dependency Resolver
	Provide Filters via Dependency Injection
	Register the Filter Provider
	Implement the Filter Interface
	Standard Action Filter Interface
	Continuation Action Filter Interface

	Register the Filter
	Filter Overrides
	Setting the Response in an Autofac Action Filter
	Standard Web API Filter Attributes are Singletons
	Instance Filters Don’t Get Injected

	Provide Model Binders via Dependency Injection
	Register the Binder Provider
	Register Model Binders
	Mark Parameters With ModelBinderAttribute

	Per-Controller-Type Services
	Add the Controller Configuration Attribute
	Supported Services
	Service Registration
	Clearing Existing Services
	Per-Controller-Type Service Limitations

	Batching
	OWIN Integration
	Unit Testing
	Example

	SignalR
	Quick Start
	Register Hubs
	Set the Dependency Resolver
	Managing Dependency Lifetimes
	OWIN Integration

	Web Forms
	Quick Start
	Add Modules to Web.config
	Implement IContainerProviderAccessor in Global.asax
	Tips and Tricks
	Structuring Pages and User Controls for DI
	Manual Property Injection
	Explicit Injection via Attributes
	Dependency Injection via Base Page Class
	Custom Dependency Injection Modules

	Example

	.NET Core
	Quick Start
	Using a Child Scope as a Root

	ASP.NET Core
	Quick Start
	ASP.NET Core 1.1 - 2.2
	ASP.NET Core 3.0+ and Generic Hosting
	Startup Class

	Configuration Method Naming Conventions
	Dependency Injection Hooks
	Differences From ASP.NET Classic
	Controllers as Services
	Multitenant Support
	Using a Child Scope as a Root
	Example

	Azure Functions
	Overview of Steps
	Autofac Job Activator
	Startup Class
	Example Function
	Acknowledgements

	Blazor
	Windows Communication Foundation (WCF)
	Clients
	Services
	Quick Start
	Register Service Implementations
	Register By Type
	Register by Interface
	Register by Name

	Pick the Right Host Factory
	Svc-Less Services
	Extensionless Services
	WAS Hosting and Non-HTTP Activation
	Self-Hosting
	Handling InstanceContextMode.Single Services
	IIS/WAS Hosted
	Self-Hosted

	Simulating a Request Lifetime Scope
	Using Decorators With Services
	Example

	Service Fabric
	Quick Start
	Per-Request Scopes
	Example

	Managed Extensibility Framework (MEF)
	Consuming MEF Extensions in Autofac
	Providing Autofac Components to MEF Extensions
	Using Metadata
	Known Issues / Gotchas

	Common Service Locator
	Moq
	Getting Started
	Configuring Mocks
	Configuring Specific Dependencies

	FakeItEasy
	Getting Started
	Configuring Fakes
	Configuring Specific Dependencies
	Options for Fakes

	Best Practices and Recommendations
	Always Resolve Dependencies from Nested Lifetimes
	Structure Configuration with Modules
	Use As<T>() in Delegate Registrations
	Use Constructor Injection
	Use Relationship Types, Not Service Locators
	Register Components from Least-to-Most Specific
	Use Profilers for Performance Checking
	Register Once, Resolve Many
	Register Frequently-Used Components with Lambdas
	Consider a Container as Immutable
	Optimize or Avoid Diagnostics

	Advanced Topics
	Registration Sources
	“Any Concrete Type Not Already Registered” Source
	Contravariant Registration Source
	Implementing a Registration Source

	Adapters and Decorators
	Adapters
	Decorators
	Simplified Syntax
	Classic Syntax

	Composites
	Metadata
	Lifetime
	Decorators
	Composites and Collections

	Circular Dependencies
	Property/Property Dependencies
	Constructor/Property Dependencies
	Constructor/Constructor Dependencies

	Component Metadata / Attribute Metadata
	Adding Metadata to a Component Registration
	Consuming Metadata
	Strongly-Typed Metadata
	Interface-Based Metadata
	Attribute-Based Metadata
	Create Your Metadata Attribute
	Apply Your Metadata Attribute
	Use Metadata Filters on Consumers
	KeyFilterAttribute
	MetadataFilterAttribute

	Ensure the Container Uses Your Attributes

	Named and Keyed Services
	Named Services
	Keyed Services
	Resolving Explicitly
	Resolving with an Index
	Resolving with Attributes

	Delegate Factories
	Create a Delegate
	Consume the Delegate
	Add Resolved Constructor Parameters
	Lifetime Scopes and Disposal
	RegisterGeneratedFactory (Obsolete)

	Owned Instances
	Lifetime and Scope
	Relationship Types
	Owned of T
	Combining Owned with Func
	Owned and Tags

	Pooled Instances
	Getting Started
	Resetting Pooled Instances Between Resolves
	Pool Capacity
	Matching Lifetime Scopes
	Pool Policies

	Custom Constructor Selection
	FindConstructorsWith & IConstructorFinder
	IConstructorSelector

	Handling Concurrency
	Component Registration
	Service Resolution
	Lifetime Events
	Thread Scoped Services
	Internals
	Thread-Safe Types
	Deadlock Avoidance

	Multitenant Applications
	What Is Multitenancy?
	General Principles
	Reference NuGet Packages
	Register Dependencies
	Identify the Tenant
	Resolve Tenant-Specific Dependencies

	ASP.NET Integration
	ASP.NET Application Startup
	Tenant-Specific Controllers

	ASP.NET Core Integration
	WCF Integration
	Reference Packages for WCF Integration
	Passing Tenant ID with a Behavior
	Tenant Identification from OperationContext
	Hosting Multitenant Services
	Managing Service Attributes
	Tenant-Specific Service Implementations

	WCF Application Startup
	WCF Client Application Startup
	WCF Service Application Startup

	Tenant ID Strategy Tips
	Example

	AssemblyLoadContext and Lifetime Scopes
	Resolve Pipelines
	Service Pipelines vs Registration Pipelines
	Pipeline Phases
	Adding Registration Middleware
	Defining Middleware Classes
	Adding Middleware to all Registrations

	ResolveRequestContext
	Adding Service Middleware
	Service Middleware Sources
	Aggregate Services
	Introduction
	Required References
	Getting Started
	How Aggregate Services are Resolved
	Properties
	Methods
	Property Setters and Void Methods
	How It Works
	Performance Considerations

	Type Interceptors
	Enabling Interception
	Create Interceptors
	Register Interceptors with Autofac
	Enable Interception on Types
	Associate Interceptors with Types to be Intercepted

	Tips
	Use Public Interfaces
	Use Virtual Methods
	Usage with Expressions
	Interface Registrations
	WCF Proxies
	Class Interceptors and UsingConstructor

	Known Issues
	Asynchronous Method Interception
	Castle.Core Versioning

	Cross-Platform and Native Applications
	Xamarin
	.NET Native

	Debugging and Troubleshooting
	Exceptions
	The requested service has not been registered
	Example Message
	Troubleshooting

	No constructors can be found
	Example Message
	Troubleshooting

	None of the constructors found can be invoked
	Example Message
	Troubleshooting

	No scope with a matching tag
	Example Message
	Troubleshooting

	Diagnostics
	Diagnostics
	Quick Start
	Default Diagnostic Tracer
	DOT Graph Tracer
	Custom Tracers
	Symbols and Sources

	Support

	Examples
	Examples Repository
	log4net Integration Middleware

	Frequently Asked Questions
	How do I work with per-request lifetime scope?
	Note on ASP.NET Core
	Registering Dependencies as Per-Request
	How Per-Request Lifetime Works
	Sharing Dependencies Across Apps Without Requests
	Testing with Per-Request Dependencies
	Faking an MVC Request Scope
	Faking a Web API Request Scope

	Troubleshooting Per-Request Dependencies
	No Scope with a Tag Matching ‘AutofacWebRequest’
	No Per-Request Filter Dependencies in Web API

	Implementing Custom Per-Request Semantics

	How do I pick a service implementation by context?
	Option 1: Redesign Your Interfaces
	Option 2: Change the Registrations
	Option 3: Use Keyed Services
	Option 4: Use Metadata

	How do I create a session-based lifetime scope in a web application?
	Why This is a Bad Idea
	Memory Footprint
	Not Farm Friendly
	Session Not Consistently Used
	Unreliable Disposal

	How to Do It

	Why aren’t my assemblies getting scanned after IIS restart?
	How do I conditionally register components?
	Use Configuration
	Use Modules
	Lambda Registrations

	How do I share component registrations across application types?
	How do I keep Autofac references isolated away from my app?
	Application Startup
	Component Registrations
	Assembly Scanning
	Modules
	Configuration
	IStartable

	Service Resolution
	Service Location
	Implicit Relationships

	Why are “old versions” of the framework (e.g., System.Core 2.0.5.0) referenced?
	Why don’t all Autofac packages target the latest Autofac core?
	How do I inject configuration, environment, or context parameters?
	Option 1: Register Using a Lambda
	Option 2: Use a Provider

	How do I pass a parameter to a component in the middle of a resolve chain?
	Why This is a Design Problem
	Solutions

	Why isn’t container registration analysis built in?
	Why are things in my Xamarin app misbehaving?

	Glossary
	Contributor Guide
	Getting Support
	Community Support
	Commercial Support
	Filing an Issue

	Owner’s Guide
	Ownership is About Trust
	Code of Conduct
	Responsibilities
	API Design
	Bug Fixes and Enhancements
	Performance and Testing
	Issue Review
	Pull Request Review
	Support
	Documentation and Examples
	Compatibility

	Release Process
	You Are Not Alone

	Indices and tables

